论文部分内容阅读
为了提高兰州重离子加速器冷却储存环(HIRFL-CSR)的运行效率、改善加速器输出束流品质,并实现几个加速装置分时供束,提高整个重离子加速装置的利用率,特为(HIRFL-CSR)增建一台新的注入器——CSR-LINAC。在108.48 MHz的RFQ之后的CSR-LINAC主加速段,主要由一台108.48 MHz和两台216.96 MHz的IH型漂移管直线加速器组成,用于加速荷质比为1/8.5~1/3之间的重离子,其最大的束流流强为3 mA,并将粒子从0.3 Me V/u加速到3.71 Me V/u。运用KONUS动力学原理,在满足设计指标的情况下,首先利用Trace Win程序进行中能束线MEBT设计,后针对高频腔体设计和束流匹配的基本参数的系列讨论,特别是对CSR-LINAC的中能束流匹配线、参数选择和IH型KONUS结构的漂移管直线加速器进行设计模拟优化。最终得出,在保证腔体设计指标和95.3%的传输效率的情况下,该紧凑型直线加速结构经过三个腔体的加速后,束流的纵向归一化均方根发射度增长仅有25%;同时发现,当流强达到3 mA时,存在空间电荷效应,导致其纵向相宽增长约25%,最大横向包络也存在16.5%的涨落。
In order to improve the operational efficiency of HIRFL-CSR, improve the quality of accelerator output beam, and achieve several beam-splitters for time-sharing of accelerators and improve the utilization rate of heavy ion accelerator, HIRFL -CSR) Add a new injector - CSR-LINAC. The main CSR-LINAC acceleration after the RFQ of 108.48 MHz mainly consists of an IH type drift tube linear accelerator of 108.48 MHz and two 216.96 MHz for accelerating the charge-to-mass ratio of 1 / 8.5 to 1/3 Of heavy ions with a maximum beam current of 3 mA and acceleration of the particles from 0.3 Me V / u to 3.71 Me V / u. Based on KONUS dynamics theory, MEBT was first designed with Trace Win program and then with a series of discussions on the basic parameters of high-frequency cavity design and beam matching, especially for CSR-LINAC Of the beam to match the line, the choice of parameters and IH KONUS structure of the drift tube linear accelerator design simulation optimization. Finally, it is concluded that the vertical normalized root-mean-square emittance of the beam increases only after accelerating through three cavities while ensuring the design index of the cavity and the transmission efficiency of 95.3% 25%. At the same time, it is found that there is space charge effect when the flow reaches 3 mA, resulting in an increase of about 25% in the longitudinal phase width and 16.5% in the maximum lateral envelope.