论文部分内容阅读
由于Gabor小波和贝叶斯方法都可以通过不同的机制来减少类内差异,提出了融合Gabor和贝叶斯的人脸识别方法。该方法首先通过人脸图像特征点与Gabor滤波器的卷积来提取特征,借鉴"作差法"形成"类内差"和"类间差"空间,并用2DPCA对差异空间进行降维,最后用贝叶斯方法进行分类。通过在AR和FERET人脸库上的实验表明,与传统的方法相比较,该方法降低了运算量,提高了识别率,对具有表情及光照变化的人脸具有较高的识别率。