论文部分内容阅读
对于基于人工神经网络的短期负荷预测来说,日期类型(星期几)是需要考虑的重要影响因素。通常,日期类型系数被编成7位二进制码作为神经网络的输入变量。该文提出一种日期类型系数的确定方法,将日期类型系数编为1位输入变量,由于精简了输入量,从而提高了预测精度。该日期类型系数通过计算不同日期类型的负荷–气温散点图的拟合曲线、并估计不同日期类型的负荷之差得到。为了消除夏季气温累计效应对负荷的影响并得到更清晰的负荷日期特征,