论文部分内容阅读
摘 要:类比推理是一种较为常见的科学研究方法,在数学中得到了广泛应用,是数学教学的重点内容之一,同时也是数学考试的必考内容。类比推理是根据两种或两类事物或对象的部分属性中的共有部门为基础,运用特殊推理方法得到某种规律或结论。类比推理主要考察学生的推究能力、思维发现能力以及逻辑判断能力。在实际的数学教学中,类比推理具有较重要的作用,能够为学生提供新的解题思路和途径。
关键词:类比推理;高中数学;践中应用
在高中数学学习中,学生掌握数学知识的前提是要学会独立思考、拓展思维,通过对题目的观察和研究,找到其中的共同特点,从而解决问题。通过数学学习中学会运用类比推理法在原有知识与新问题之间建立联系,寻找相似特点,找到最终规律,类比推理在高中数学教学实践中发挥着重要作用,有助于培养学生通过类比推理方法发展发散式思维。
一、类比推理在高中数学教学中的实际意义
高中数学是一种更为严谨规范的学科,教学难度更大、教学目标更高。随着新课改以及素质教育的要求,教师需要从传统的教学模式中转变过来,有知识的“灌输者”转变成学生学习的“引导者”,这一转变更加体现了学生的主体地位与教师的主导作用,为师生都带来更大的挑战。在此前提下,教师需要不断更新教学方法,类比推理法就是很好的运用。类比推理法能够培养学生的逻辑思维能力,培养学生独立思考,挖掘学生数学潜能。因此,类比推理法是高中数学教师重点掌握的教学技巧。
二、类比推理在高中数学教学中的积极作用
1.有利于培养学生自主学习能力
类比推理适用于科学研究领域,能够为探索新知识理论提供新思路与方法,通过原有知识去研究和探索新知识。如:在学习抛物线的以后,可以通过抛物线的知识定理运用类比推理法去研究和探索双曲线以及椭圆的知识,建立新旧知识点之间的联系,找到彼此之间的规律。
2.帮助学生探索新的解题思路
类比推理在高中数学的应用是教会学生解题方法,更重要的是一种学习能力,一种新型解题思路。通过类比推理,寻求更快更好地解题方法。类比推理法主要包括三种形式:结构类比、结论类比以及降维类比。结构类比主要是在类比过程中通过两者结构的相似找到规律;结论类比是在问题的结论中找到难以解决的问题,并进行分类对比以找到共同属性;降维类比长用于空间结构中,将多维度问题转变成平面图或简单图形,从中得出问题的答案。
三、类比推理在高中数学教学中的应用
1.数学概念形成过程中的应用
高中数学各章节的知识结构设置比较分散,但是却不是完全割裂、毫无联系的,它们之间具有耨写共同属性。运用类比推理可以找出这些相同的特点和属性,形成统一的知识概念,在头脑中形成规律,便于理解和记忆数学知识。
在学习二面角的时候,学习的重点是二面角的计算,因此可以通过将平面角与二面角相比较,通过类比二者的图形的方法进行定义。如“二面角是从直线出发到平面内由一条直线将平面分的两部分所组成的图形,平面角指的则是一平面内不在一直线上两条相交线互相的倾斜度”,二者彼此概念不同,但却有共通之处。通过平面角度量二面角大小,可知二面角的平面角大小的数值与二面角大小相等。通过已有知识可以推导新知识概念,加深理解和印象。
2.在提出问题方面的应用
高中数学教学中,学生不光是被动的听课,还要积极主动的思考,归类与总结知识点,将教师所传授的一切转化吸收为自己的知识。在遇到不懂的问题时,可以运用类比推理法进行问题的总结,加深对问题的认识理解。在此过程中,类比推理法的作用是助推器的角色,能够锻炼学生的逻辑思维、调动学生的学习兴趣、提高学生的主动性,培养学生的创造能力及创新能力。通过教学实践表明,类比推理能够建立知识点之间的横向与纵向的联系,形成立体知识网络结构,加深学生知识储备量,为创新性思维学习能力提供了必要和可能。如,在讲“双曲线”时,通过比较椭圆和双曲线相类比是较为常见的做法。二者在方程、对称性、焦点、离心率、准线、渐进性方程、曲线上点切线方程等方面都可比之处。比较后,可以更加直观的了解二者的特征,梳理相关概念,使知识更加具体、系统。
综上所述,类比推理在高中数学中得到了及其广泛的推广和应用,教师应该高度重视类比推理的教学实践应用,不断培养学生通过类比推理的方法解决数学问题,培养学生的数学学习兴趣,提高学生独立思考及解决问题的能力,培养学生的创造性思维逻辑,帮助学生完善自身,提高学习质量。教师也应该转变教学观念,发挥类比推理的实际功能,提高课堂的教学效率。
参考文献:
[1]林志.高中数学教学实践中类比推理的应用研究[J].数学学习与研究,2013,23:16+18.
[2]幸垂燕.类比推理在高中数学教学实践中的应用研究[J].理科考试研究,2014,21:13.
[3]杜长固.类比推理在高中数学教学实践中的应用研究[J].中国校外教育,2013,34:90.
[4]韩多瑞.类比推理在高中数学教学实践中的应用研究[J].数理化学习,2015,05:64.
[5]朱海峰.类比推理在高中数学教学中的应用研究[J].数学学习与研究,2013,17:42.
(作者单位:江苏省盐城市阜宁县东沟中学)
关键词:类比推理;高中数学;践中应用
在高中数学学习中,学生掌握数学知识的前提是要学会独立思考、拓展思维,通过对题目的观察和研究,找到其中的共同特点,从而解决问题。通过数学学习中学会运用类比推理法在原有知识与新问题之间建立联系,寻找相似特点,找到最终规律,类比推理在高中数学教学实践中发挥着重要作用,有助于培养学生通过类比推理方法发展发散式思维。
一、类比推理在高中数学教学中的实际意义
高中数学是一种更为严谨规范的学科,教学难度更大、教学目标更高。随着新课改以及素质教育的要求,教师需要从传统的教学模式中转变过来,有知识的“灌输者”转变成学生学习的“引导者”,这一转变更加体现了学生的主体地位与教师的主导作用,为师生都带来更大的挑战。在此前提下,教师需要不断更新教学方法,类比推理法就是很好的运用。类比推理法能够培养学生的逻辑思维能力,培养学生独立思考,挖掘学生数学潜能。因此,类比推理法是高中数学教师重点掌握的教学技巧。
二、类比推理在高中数学教学中的积极作用
1.有利于培养学生自主学习能力
类比推理适用于科学研究领域,能够为探索新知识理论提供新思路与方法,通过原有知识去研究和探索新知识。如:在学习抛物线的以后,可以通过抛物线的知识定理运用类比推理法去研究和探索双曲线以及椭圆的知识,建立新旧知识点之间的联系,找到彼此之间的规律。
2.帮助学生探索新的解题思路
类比推理在高中数学的应用是教会学生解题方法,更重要的是一种学习能力,一种新型解题思路。通过类比推理,寻求更快更好地解题方法。类比推理法主要包括三种形式:结构类比、结论类比以及降维类比。结构类比主要是在类比过程中通过两者结构的相似找到规律;结论类比是在问题的结论中找到难以解决的问题,并进行分类对比以找到共同属性;降维类比长用于空间结构中,将多维度问题转变成平面图或简单图形,从中得出问题的答案。
三、类比推理在高中数学教学中的应用
1.数学概念形成过程中的应用
高中数学各章节的知识结构设置比较分散,但是却不是完全割裂、毫无联系的,它们之间具有耨写共同属性。运用类比推理可以找出这些相同的特点和属性,形成统一的知识概念,在头脑中形成规律,便于理解和记忆数学知识。
在学习二面角的时候,学习的重点是二面角的计算,因此可以通过将平面角与二面角相比较,通过类比二者的图形的方法进行定义。如“二面角是从直线出发到平面内由一条直线将平面分的两部分所组成的图形,平面角指的则是一平面内不在一直线上两条相交线互相的倾斜度”,二者彼此概念不同,但却有共通之处。通过平面角度量二面角大小,可知二面角的平面角大小的数值与二面角大小相等。通过已有知识可以推导新知识概念,加深理解和印象。
2.在提出问题方面的应用
高中数学教学中,学生不光是被动的听课,还要积极主动的思考,归类与总结知识点,将教师所传授的一切转化吸收为自己的知识。在遇到不懂的问题时,可以运用类比推理法进行问题的总结,加深对问题的认识理解。在此过程中,类比推理法的作用是助推器的角色,能够锻炼学生的逻辑思维、调动学生的学习兴趣、提高学生的主动性,培养学生的创造能力及创新能力。通过教学实践表明,类比推理能够建立知识点之间的横向与纵向的联系,形成立体知识网络结构,加深学生知识储备量,为创新性思维学习能力提供了必要和可能。如,在讲“双曲线”时,通过比较椭圆和双曲线相类比是较为常见的做法。二者在方程、对称性、焦点、离心率、准线、渐进性方程、曲线上点切线方程等方面都可比之处。比较后,可以更加直观的了解二者的特征,梳理相关概念,使知识更加具体、系统。
综上所述,类比推理在高中数学中得到了及其广泛的推广和应用,教师应该高度重视类比推理的教学实践应用,不断培养学生通过类比推理的方法解决数学问题,培养学生的数学学习兴趣,提高学生独立思考及解决问题的能力,培养学生的创造性思维逻辑,帮助学生完善自身,提高学习质量。教师也应该转变教学观念,发挥类比推理的实际功能,提高课堂的教学效率。
参考文献:
[1]林志.高中数学教学实践中类比推理的应用研究[J].数学学习与研究,2013,23:16+18.
[2]幸垂燕.类比推理在高中数学教学实践中的应用研究[J].理科考试研究,2014,21:13.
[3]杜长固.类比推理在高中数学教学实践中的应用研究[J].中国校外教育,2013,34:90.
[4]韩多瑞.类比推理在高中数学教学实践中的应用研究[J].数理化学习,2015,05:64.
[5]朱海峰.类比推理在高中数学教学中的应用研究[J].数学学习与研究,2013,17:42.
(作者单位:江苏省盐城市阜宁县东沟中学)