论文部分内容阅读
依照图像识别出的对象标签,通过层次结构来分类图像集是图像自动化分类的重要研究问题之一。现有的方法实现了对象标签已知情况下的层次结构构建,仅存在少量方法考虑部分对象标签未知的影响。本文对经典方法进行了扩展和优化,实现了存在部分对象标签未知情况下的层次结构构建和更新。利用卷积神经网络(Convolutional neural network,CNN)对图像编码,提出半监督学习方法,根据传统算法构建类标签已知图像集的层次结构,通过周期性相似性比较,对层次结构中标签未知图像进行聚类,实现对半监督分层模型(S