论文部分内容阅读
(邯郸市实验小学 河北 邯郸 056000)
两年多来,我国义务教育数学课程改革呈现了可喜的变化。学生的知识面广了,学得活了,学习兴趣浓了,课堂开放了,教师与学生的亲和力增加了。在看到这些变化的同时,又要冷静下来对目前实施过程中的一些困惑问题进行反思。“摸着石头过河”究竟摸得到哪些石头?摸得怎样?有哪些问题有待进一步研究解决?
1. 多样化与优化 现代教育的基本理念是“以学生的发展为本”,既要面向全体,又要尊重差异。作为教师,要促进学生的全面发展,就要尊重个性化,不搞填平补充一刀切,要创造促进每个学生得到长足发展的数学教育。
算法多样化是针对过去计算教学中往往只有一种算法的弊端提出来的。例如某一种题目,只要求笔算,另一种题目只要求口算,即使口算也往往只有一种思路(当然,学生如有其他思路也不限制),这样很容易忽略个别差异,遏制了学生的创造性,何况有不少题目本来就可以有多种算法的。可以说,鼓励算法多样化是在计算教学中促进每个学生在各自基础上得到发展的一个有效途径。
曾经看到一次低年级的计算课上,讨论一道计算题,出现了10种、20多种的算法,教师还一个劲儿地给予鼓励,临下课时,只简单地说了一句:“你们可以用自己喜欢的方法来算。”其结果是班上思维迟缓的一些学生是眼花缭乱、无所适从,产生了干扰,这种情况是不是我们鼓励的个性化呢?我认为不然,数学是讲“优化”的,算法“优化”的含义是要求寻找最简捷、最容易、速度最快的方法。诚然,在多种算法中,有的并不见得有优劣之分,如20以内退位减法,无论是用“破十”“连减”或“用加算减”的方法,都很难说孰优孰劣,儿童完全可随自己的经验进行选择;又如长方形周长的求法,有的愿意用“(长+宽)×2”的方法,有的则用“长×2+宽×2”的方法,学生喜欢用哪个就用哪个。但是在一般情况下,总有个最基本、最一般化或最佳的算法。教学中,教师有责任引导学生去比较、去评价,并使大家掌握那些公认的更好、更一般化的算法,以便举一反三、闻一知百,否则就失去了教育的功能。请看一位教师教两位数乘两位数的新课实录。由实例引出24×12=?第一步先由学生各自探索算法,分组交流(有10种左右),经过归纳不外乎以下三类:连加、连乘(24×3×4、24×2×6……)、乘法分配律的应用(24×10+24×2……);第二步由学生评价,一致认为三类算法都合理,但第一类太麻烦,其他两类各有优势;第三步,教师将题目改为24×13,请学生用自己喜欢的算法计算,结果都选择为24×10+24×3,此乃笔算乘法的算理。此时,教师便因势利导引入了乘法竖式,并使学生体会到它的优越性——能将乘法算理以固定而简明的程式显示,操作性强,简捷而不易出错,并具有一般性。我认为这种教学是正确的,又促进了儿童的发展,才是真正凸现了“算法多样化”的实质。算法多样化绝非是越“多”越好,切忌一些无价值的重复。总之,一切要从儿童的实际出发。
2. 探索与发现 学习方式一般来说,可分为接受学习与发现学习两种。发现学习是由教师提出问题,学生自己独立探索和发现其结论。这种学习方式(亦称发现法)是20世纪50年代末美国著名认知心理学家J.S?布鲁纳提倡的,并流传欧美。这种方式在不同的国家有不同的名称,如问题研究法、探索法等,实质均基本相同。布鲁纳认为,在人类全部生活中,人的最大的特点是会发现问题,他把学生视为“发现者”,甚至像科学家那样去发现,教师不给任何启发和帮助。创导者认为,这种学习方式可以最大限度地发挥学生的积极性、主动性和创造性,启迪学生的智慧,培养探索能力和独立获取知识的能力。20世纪70年代传入中国时,我国教育家将“发现法”引申为“引导发现法”,主张在必要时教师可从适当给学生一点“引导”,与布鲁纳的“纯发现法”有些区别。教学实践折射出这样一个道理,外国的先进经验或理论的引入,必须本土化才能发挥其积极作用。我国目前强调的“自主探索”与“发现学习”亦基本相同。
目前我国提倡的探索学习则不同。这种学习方式不呈现学习结论,而是让学生通过对一定材料的实验、尝试、推测、思考去探索发现某些数量关系和图形特征。例如:学习平行四边形面积求法时,学生用各种不同的平行四边形纸片,通过剪拼、割补转化成一个长方形,然后分析割补后的长方形的长和宽与原来平行四边形的底和高的关系,从而探索出平行四边形的面积公式为“底×高”。
就以上两种学习方式的功能比较而言:探索学习比较开放,它更重视学生的学习动机,更强调学习过程,有利用学生直觉思维和创新潜能的培养和发挥,但是费时较多,何况数学学习不必要也不可能由学生处处去亲自发现和独立探索。有意义的接受学习可以在较短的时期内使学生吸取更多的信息,但是必须具备两个条件,一是学习课题对原认知结构具有潜在的意义;二是学生具有积极学习的心向。如果两个条件俱全,同样可以激发学习的主动性,学习也是有效的,如果缺少其中一个条件,就容易造成死记硬背。
新一轮课改中反复强调的“动手实践、自主探索是学生学习数学的重要方式”,要“改变学习方式”等,(下转33页) 主要是针对过去过分沉湎于接受学习而影响学生创新精神的情况而提出的,绝不意味着反对接受学习。教学中,教师应全面而综合地从教学内容、要求、对象等各种因素进行思考,引导学生采用恰当的学习方式进行学习,以确保学习的有效性。那种提倡一种又去否定另一种学习方式“非此即彼”的绝对化做法和说法,不仅不符合实践,而且对课改的深入发展是有害无益的。
自主探索是教师引导下的自主探索,要处理好自主和引导、放和收、过程和结果之间的辩证关系。面对挑战性问题,估计学生通过努力能够探索求得的,就应大胆放开,放要放得真心、实在,收要收得及时、自然。应该看到,只放不收只是表面上的热热闹闹,收效极微,失去了教师有价值的引导,剩下的主体性往往也是苍白无力的。广大教师都很注重创设各类问题情境,为学生提供成功的契机,从而增强他们的学习兴趣和成就感,现已取得了一定的成果。笔者认为在提倡获得成功的同时,也要让学生经受一些挫折与失败。成功与挫折都有两面性,学习是艰苦的劳动,探索、实验、尝试的道路不是笔直的,必然会经受挫折或失败。成功只有在失败的折射下才显得更加耀眼,在挫折的磨炼下才更有价值。激励学生学习的自信心,这才是新课程教学中教师的正确行为。
两年多来,我国义务教育数学课程改革呈现了可喜的变化。学生的知识面广了,学得活了,学习兴趣浓了,课堂开放了,教师与学生的亲和力增加了。在看到这些变化的同时,又要冷静下来对目前实施过程中的一些困惑问题进行反思。“摸着石头过河”究竟摸得到哪些石头?摸得怎样?有哪些问题有待进一步研究解决?
1. 多样化与优化 现代教育的基本理念是“以学生的发展为本”,既要面向全体,又要尊重差异。作为教师,要促进学生的全面发展,就要尊重个性化,不搞填平补充一刀切,要创造促进每个学生得到长足发展的数学教育。
算法多样化是针对过去计算教学中往往只有一种算法的弊端提出来的。例如某一种题目,只要求笔算,另一种题目只要求口算,即使口算也往往只有一种思路(当然,学生如有其他思路也不限制),这样很容易忽略个别差异,遏制了学生的创造性,何况有不少题目本来就可以有多种算法的。可以说,鼓励算法多样化是在计算教学中促进每个学生在各自基础上得到发展的一个有效途径。
曾经看到一次低年级的计算课上,讨论一道计算题,出现了10种、20多种的算法,教师还一个劲儿地给予鼓励,临下课时,只简单地说了一句:“你们可以用自己喜欢的方法来算。”其结果是班上思维迟缓的一些学生是眼花缭乱、无所适从,产生了干扰,这种情况是不是我们鼓励的个性化呢?我认为不然,数学是讲“优化”的,算法“优化”的含义是要求寻找最简捷、最容易、速度最快的方法。诚然,在多种算法中,有的并不见得有优劣之分,如20以内退位减法,无论是用“破十”“连减”或“用加算减”的方法,都很难说孰优孰劣,儿童完全可随自己的经验进行选择;又如长方形周长的求法,有的愿意用“(长+宽)×2”的方法,有的则用“长×2+宽×2”的方法,学生喜欢用哪个就用哪个。但是在一般情况下,总有个最基本、最一般化或最佳的算法。教学中,教师有责任引导学生去比较、去评价,并使大家掌握那些公认的更好、更一般化的算法,以便举一反三、闻一知百,否则就失去了教育的功能。请看一位教师教两位数乘两位数的新课实录。由实例引出24×12=?第一步先由学生各自探索算法,分组交流(有10种左右),经过归纳不外乎以下三类:连加、连乘(24×3×4、24×2×6……)、乘法分配律的应用(24×10+24×2……);第二步由学生评价,一致认为三类算法都合理,但第一类太麻烦,其他两类各有优势;第三步,教师将题目改为24×13,请学生用自己喜欢的算法计算,结果都选择为24×10+24×3,此乃笔算乘法的算理。此时,教师便因势利导引入了乘法竖式,并使学生体会到它的优越性——能将乘法算理以固定而简明的程式显示,操作性强,简捷而不易出错,并具有一般性。我认为这种教学是正确的,又促进了儿童的发展,才是真正凸现了“算法多样化”的实质。算法多样化绝非是越“多”越好,切忌一些无价值的重复。总之,一切要从儿童的实际出发。
2. 探索与发现 学习方式一般来说,可分为接受学习与发现学习两种。发现学习是由教师提出问题,学生自己独立探索和发现其结论。这种学习方式(亦称发现法)是20世纪50年代末美国著名认知心理学家J.S?布鲁纳提倡的,并流传欧美。这种方式在不同的国家有不同的名称,如问题研究法、探索法等,实质均基本相同。布鲁纳认为,在人类全部生活中,人的最大的特点是会发现问题,他把学生视为“发现者”,甚至像科学家那样去发现,教师不给任何启发和帮助。创导者认为,这种学习方式可以最大限度地发挥学生的积极性、主动性和创造性,启迪学生的智慧,培养探索能力和独立获取知识的能力。20世纪70年代传入中国时,我国教育家将“发现法”引申为“引导发现法”,主张在必要时教师可从适当给学生一点“引导”,与布鲁纳的“纯发现法”有些区别。教学实践折射出这样一个道理,外国的先进经验或理论的引入,必须本土化才能发挥其积极作用。我国目前强调的“自主探索”与“发现学习”亦基本相同。
目前我国提倡的探索学习则不同。这种学习方式不呈现学习结论,而是让学生通过对一定材料的实验、尝试、推测、思考去探索发现某些数量关系和图形特征。例如:学习平行四边形面积求法时,学生用各种不同的平行四边形纸片,通过剪拼、割补转化成一个长方形,然后分析割补后的长方形的长和宽与原来平行四边形的底和高的关系,从而探索出平行四边形的面积公式为“底×高”。
就以上两种学习方式的功能比较而言:探索学习比较开放,它更重视学生的学习动机,更强调学习过程,有利用学生直觉思维和创新潜能的培养和发挥,但是费时较多,何况数学学习不必要也不可能由学生处处去亲自发现和独立探索。有意义的接受学习可以在较短的时期内使学生吸取更多的信息,但是必须具备两个条件,一是学习课题对原认知结构具有潜在的意义;二是学生具有积极学习的心向。如果两个条件俱全,同样可以激发学习的主动性,学习也是有效的,如果缺少其中一个条件,就容易造成死记硬背。
新一轮课改中反复强调的“动手实践、自主探索是学生学习数学的重要方式”,要“改变学习方式”等,(下转33页) 主要是针对过去过分沉湎于接受学习而影响学生创新精神的情况而提出的,绝不意味着反对接受学习。教学中,教师应全面而综合地从教学内容、要求、对象等各种因素进行思考,引导学生采用恰当的学习方式进行学习,以确保学习的有效性。那种提倡一种又去否定另一种学习方式“非此即彼”的绝对化做法和说法,不仅不符合实践,而且对课改的深入发展是有害无益的。
自主探索是教师引导下的自主探索,要处理好自主和引导、放和收、过程和结果之间的辩证关系。面对挑战性问题,估计学生通过努力能够探索求得的,就应大胆放开,放要放得真心、实在,收要收得及时、自然。应该看到,只放不收只是表面上的热热闹闹,收效极微,失去了教师有价值的引导,剩下的主体性往往也是苍白无力的。广大教师都很注重创设各类问题情境,为学生提供成功的契机,从而增强他们的学习兴趣和成就感,现已取得了一定的成果。笔者认为在提倡获得成功的同时,也要让学生经受一些挫折与失败。成功与挫折都有两面性,学习是艰苦的劳动,探索、实验、尝试的道路不是笔直的,必然会经受挫折或失败。成功只有在失败的折射下才显得更加耀眼,在挫折的磨炼下才更有价值。激励学生学习的自信心,这才是新课程教学中教师的正确行为。