论文部分内容阅读
数值求解对流占优的高阶非线性偏微分方程存在近似高阶导数和抑制数值振荡两方面的困难。本文采用容易近似高阶导数的无单元Galerkin方法,并借鉴迎风稳定化方法的思想,建立了基于偏心支持域的迎风无单元Galerkin方法。为保证无单元Galerkin方法在近似高阶导数时形函数满足一致性条件,本文在构造形函数时采用了一种定义在局部坐标中的平移多项式基函数。数值结果表明,使用平移多项式基函数的迎风无单元Galerkin方法在求解对流占优的高阶非线性偏微分方程时,具有精度高、稳定性好和实施简单的优点。