论文部分内容阅读
在超声检测中,对缺陷进行定性分析是无损检测与评价的关键内容。本研究提出一种对缺陷类型进行分类的检测方法,通过对不同类型的缺陷波信号进行特征量提取,实现对缺陷的类型识别。首先使用空气耦合超声检测系统采集无缺陷信号与3种不同类型的缺陷波信号,提取信号的时域无量纲参数和小波包能量系数组成多维特征向量;然后使用主成分分析法(Principal component analysis,PCA)对多维特征向量进行降维处理得到特征融合量;最后输入BP神经网络系统进行缺陷类型的分类,并与未经过PCA处理的测试结果进行对比分