论文部分内容阅读
建立了基于Stacking集成学习下气态亚硝酸(HONO)预测模型.利用非相干宽带腔增强吸收光谱(IBBCEAS)系统获得的北京城区HONO的浓度,结合HONO的来源,选取了O3、CO、SO2、NO、NO2、NOy、温度(T)、相对湿度(RH)、风速(WS)、j(HONO)、j(NO2)、j(O1D)作为特征数据,通过对HONO的平均日变化分析,将测量时间按小时转换为新特征.分别以极端梯度提升(XGBoost)、轻量化梯度促进机(LightGBM)以及随机森林(RF)算法构建基模型,采用5折交叉验证的方式