论文部分内容阅读
Web搜索系统往往通过与用户的交互来精化查询以提高搜索性能.除文字之外,网页中还存在着大量其它模态的信息,如图像、音频和视频等.以往对于查询精化的研究很少涉及对多模态信息的利用.文中提出了一种基于半监督学习的多模态Web查询精化方法M2S2QR,将Web查询精化转化为一个机器学习问题加以解决.首先,基于用户判断后的网页信息,分别为不同模态训练相应的学习器,然后利用未经用户判断的网页信息来提高学习器性能,最后将不同模态学习器结合起来使用.实验验证了文中方法的有效性.