论文部分内容阅读
迄今,现有的油田进行沉积微相模式识别时大多选取测井曲线的静态定量数据,其难以反映测井相的深度累积效应对沉积微相模式识别的影响。针对上述不足,选取测井曲线中可处理的定量与定性混合过程信息,构建并提出了模糊推理和过程神经网络相结合的判别模型,以实现沉积微相的判别。该模型基于模糊集理论对测井相的定性信息进行定量处理,以简化判别规则,并提取有效的判别数据,从而提高沉积微相判别的精度;根据测井相数据随深度变化的特征曲线,采用过程神经网络的过程式输入优势,通过不断优化过程神经网络的学习机制来提高沉积微相判别的准确度。