论文部分内容阅读
针对标准微粒群优化算法的惯性权重系数采用固定或线性递减的方式无法有效解决粒子陷入局部最优解的问题及可能出现的停滞现象,引入以差异性为基础的激活方法对微粒群算法进行改进.在每次迭代时算法可以动态调整惯性权重参数及粒子的活性,从而促进粒子收敛至全局最优解.对6种典型函数的实验结果表明,引入本文的激活方法后,改善了微粒群算法的开发和探索能力,并提高了其收敛速度及精度,其中以非线性惯性权值递减策略的微粒群算法最为明显.