论文部分内容阅读
将知识图谱作为辅助信息引入到推荐系统中,可以有效地增强推荐系统的学习能力,提高推荐系统的精准度和用户满意度。针对知识图谱上的偏好传播问题,提出一种基于知识图谱用户偏好传播的实体推荐模型,目的是在传播偏好的同时兼顾传播强度,提高推荐效果。通过提取不同特定属性的基本特征控制用户偏好在知识图谱上的传播强度,然后根据每个用户的历史偏好传播强度在知识图谱上迭代计算,得到用户—项目对的偏好传播模型,最终通过排序学习进行top N推荐。最后,在三个不同类型数据集上的对比实验验证该模型算法的有效性。实验证明,在偏好