论文部分内容阅读
传统的电力变压器故障诊断方法存在着识别精度低的局限性,不能有效地进行数据分析,导致无法正确诊断故障类型甚至误诊。为此,神经网络和人工群智能算法的提出,及其在电力变压器故障诊断中的应用,大大提高了故障诊断的时效性和准确性。该类方法以传统的变压器溶解气体分析(DGA)作为数据采集基础,利用神经网络良好的非线性逼近能力,同时采用群智能算法的自组织、分布式和并行性等良好性能优化神经网络参数(权值和阀值),使得神经网络的快速收敛及精确程度大幅提高,进而用优化过的神经网络对变压器溶解气体数据分析并故障分类。最后通过实