设而不求在初中数学解题中的应用

来源 :理科考试研究 | 被引量 : 0次 | 上传用户:fencer_200
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
初中数学内容比较多,如果想要很好的掌握,需要学会熟练运用各类方法.设而不求方法也是其中的一种,在解决实际的数学问题时,先设一些未知数,然后把设的未知数当成已知数代入已知问题中,去寻找本身每个量之间的相互制约关系,列出方程,最后解出未知数.根据题目本身的特点,将未知数代换或者消去,使得问题变得清晰明了,设而不求的方法在数学解题中的应用比较广泛.一、设而不求定义一个直角三角形的周长是2+槡6,斜边中线长是1,求这个三角形的面积.解设这个三角形的斜边长度为c,因为斜边上的中线长是1,所以斜边长c=2.再设两条直角边的长度是a,b,面积是 Junior high school mathematics content is more, if you want a good grasp, you need to learn to skillfully use all kinds of methods.Depending on the method is one of them, in solving practical mathematical problems, the first set some unknown, and then set Unknowns into the known problems as a known number, to find the relationship between the amount of each of their own constraints, lists the equation, and finally unknowns. According to the characteristics of the topic, the unknown substitution or elimination, making the problem becomes Clear and clear, and not seeking method is widely used in solving mathematical problems.First, set without seeking the definition of a right-angled triangle circumference is 2+ 槡 6, hypotenuse in the line length is 1, find the area of ​​this triangle Set the hypotenuse length of this triangle to be c, since the length of the hypotenuse on the hypotenuse is 1, so the length of the hypotenuse is c = 2. Let the lengths of the two right-angled edges be a, b, and the area is
其他文献
本文通过对荣华二采区10
期刊