论文部分内容阅读
【摘要】 分类讨论思想在等腰三角形的学习中渗透的很深,往往一有等腰三角形的题目都会出现分类讨论思想的影子,探究一些常见的有关等腰三角形中分类思想的例题,总结“对角进行分类讨论”“对边进行分类讨论”“对点进行分类讨论”“分类讨论的突破口作用”这4种等腰三角形中分类讨论的基本方法和思路,提高解决此类问题的准确性.
【关键词】 等腰三角形;分类讨论;边;角;坐标系;方程
分类讨论思想是初中数学学习中的重要思想,在等腰三角形中更是把分类思想体现得活灵活现.有关等腰三角形的问题涉及与边、角有关的问题,还有图形面积有关的问题,题目难度不大但十分广泛.下面以几种不同的情形进行分析探讨,进而说明等腰三角形中的分类讨论思想,从而提高学生解题的完整性和正确性.
一、有关角的分类情形——对角进行分类讨论
对一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解.
(一)已知一个等腰三角形的内角的情形
分三种情况:① 已知内角是锐角时,比如,一个内角是80°角,它既可以是底角,也可以顶角.② 已知一个内角是直角时,即90°,它只能是顶角.③ 已知一个内角是钝角时,比如,100°,它只能是顶角不能是底角.
例1
【关键词】 等腰三角形;分类讨论;边;角;坐标系;方程
分类讨论思想是初中数学学习中的重要思想,在等腰三角形中更是把分类思想体现得活灵活现.有关等腰三角形的问题涉及与边、角有关的问题,还有图形面积有关的问题,题目难度不大但十分广泛.下面以几种不同的情形进行分析探讨,进而说明等腰三角形中的分类讨论思想,从而提高学生解题的完整性和正确性.
一、有关角的分类情形——对角进行分类讨论
对一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解.
(一)已知一个等腰三角形的内角的情形
分三种情况:① 已知内角是锐角时,比如,一个内角是80°角,它既可以是底角,也可以顶角.② 已知一个内角是直角时,即90°,它只能是顶角.③ 已知一个内角是钝角时,比如,100°,它只能是顶角不能是底角.
例1