论文部分内容阅读
利用图像直方图与模糊核聚类知识,提出一种新的分割方法,即先获取直方图数据信息结合期望值理论获得初始聚类中心,然后对图像进行模糊核聚类分割.本算法可以解决模糊核聚类算法对初始的聚类中心等信息较敏感的问题.实验结果表明,与标准的模糊C-均值(FCM)聚类分割方法相比,具有更优越的分割性能,分割结果与实际图像更为接近.