论文部分内容阅读
针对多数传统目标特征无法实现复杂场景下的鲁棒视觉跟踪问题,提出一种新的视觉跟踪算法。采用卷积神经网络(CNN)提取目标更加鲁棒的深度特征,同时融合具有旋转不变性的局部二值模式纹理特征,弥补CNN深度特征在旋转适应性上的不足。根据CNN网络训练速度慢的问题,引入离线预训练方法,提高在线特征提取效率。实验结果表明,与DLT算法相比,该算法在跟踪测试集上的跟踪精度提高14.08%,运算效率提高10.47%,能够较好地适应目标表观变化,具有较强的鲁棒性和跟踪时效性。