稀疏卷积神经网络用于低成本图像分类系统稀疏卷积神经网络用于低成本图像分类系统

来源 :电光与控制 | 被引量 : 0次 | 上传用户:playlogic
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统卷积神经网络大量的计算及内存需求使嵌入式设备智能应用的开发成为挑战,为尝试将高度复杂的深度学习应用与性能有限的低成本嵌入式平台相结合,设计了一款小型嵌入式图像分类系统.实验基于结构化稀疏学习算法在Caffe框架下构建结构稀疏卷积神经网络模型,将其部署在工业派(IndustriPi)最小化系统上,通过测试得到了85.5%的准确率和处理实时影像时不小于8帧/s的运行速度.与经典模型相比,通过稀疏学习后的网络模型很大程度上减少了计算量和内存占用率,提高了低成本嵌入式设备的运行速度.
其他文献