基于YOLOv5网络模型的火焰检测

来源 :智能计算机与应用 | 被引量 : 0次 | 上传用户:xueyingnn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
煤炭资源在开采的过程中会伴随着产生一种名为煤层气的产物,煤层气又称为瓦斯,若将瓦斯直接排放至大气中,则会造成严重的温室效应,研究发现瓦斯可以通过燃烧用来发电,但瓦斯在发电过程中遇到明火,则会发生爆炸,给工作人员及企业会造成不可估量的损失,因此检测瓦斯发电站内的火焰情况,成为了解决瓦斯发电站爆炸事故的重要目标.基于火焰识别问题,采用传统目标检测算法难以满足精度要求,后续出现了基于深度学习的双步目标检测算法,虽在识别精度上能有效满足要求,但检测的实时性上存在不足.本文综合考虑目标检测的检测精度以及检测实时性,采用了最新的YOLOv5模型进行火焰的实时检测.
其他文献
研究一种基于单导联心电信号质量二分类方法.为了改善传统方法在进行心电信号质量分类下需要手动提取特征的复杂性以及选取规则包含主观性的缺点,基于Tensorflow框架设计了一个一维卷积神经网络,利用MIT-BIH和NSTDB数据库构建训练数据集,通过不断调整网络模型自动学习分类特征,使用2个公开测试集与1个私有测试集验证算法的泛化性,实验结果表明,提出的算法在3个测试集上的平均准确率为96.5%、灵敏性为98.1%和特异性为94.7%.最后,相比于基于传统SVM模型或CNN的方法,本文算法不仅精度较高,而且