论文部分内容阅读
Various types of cutting tools are known and are in use for machining parts. The dimensional parameters associated with cutting tools need to be estimated and compared to the desired values for determining their cutting performance. In this paper, a data analysis methodology for extracting parameters from a measured point set corresponding to the surface of a cutting tool is provided. We propose that the 3-D data can be simplified into 2-D data or regular data by virtually slicing it at a predetermined section or by projecting it onto a same axial plane after a simple fixed-axis rotation. A plurality of curves can be generated and optimized based on the obtained 2-D points on a cross section for calculating the section parameters, including radial (axial) rake angle, relief angle, and land width. Other dimensional parameters can also be extracted from the contour of the presented rotary axial projection data. The experimental results have shown that the approaches elaborated in this paper are effective and robust, which can be potentially extended to other applications such as the inspection of similar parts and their parameters extraction.
Various types of cutting tools are known and are in use for machining parts. The dimensional parameters associated with cutting tools need to be estimated and compared to the desired values for determining their cutting performance. In this paper, a data analysis methodology for extracting parameters from A proposed point set corresponding to the surface of a cutting tool is provided. We propose that the 3-D data can be simplified into 2-D data or regular data by virtually slicing it at a predetermined section or by projecting it onto a same axial A multiple of curves can be generated and optimized based on the obtained 2-D points on a cross section for calculating the section parameters, including radial (axial) rake angle, relief angle, and land width The dimensional structure of the presented rotary axial projection data. The experimental results have shown that the views elaborated in this pa per are effective and robust, which can be potentially extended to other applications such as the inspection of similar parts and their parameters extraction.