论文部分内容阅读
[摘 要]介绍一种适用于802.11 b/g/n标准无线局域网信号传输的砷化镓小型化接收前端集成电路产品。芯片主要由单刀三掷开关、低噪声放大器以及驱动电路组成,可提供接收放大、接收旁路、蓝牙和发射四种工作模式,具有噪声低、增益高、隔离度高以及功耗低等优点,可提供增益[email protected],噪声系数小于[email protected],工作电流小于15mA,1dB压缩点大于28dBm,可应用于绝大多数2.4GHz的短程无线保真传输系统中。
中图分类号:TN432 文献标识码:A 文章编号:1009-914X(2015)44-0267-02
一、引言
随着砷化镓集成电路工艺的技术革新,尤其是新型的E/D PHEMT工艺平台的出现和成熟,使得多种器件可以在同一个标准工艺平台上被加工出来,0.5um线条的E/D PHEMT砷化镓材料技术及工艺可将增强型和耗尽型器件集成在同一个晶圆上,可将多种不同功能的电路集成到在一颗芯片上,这也是目前射频前端简化设计的主流趋势。
二、电路设计
该芯片应用于满足802.11 b/g/n标准的无线局域网,用于无线射频信号的收发[1],该芯片内部电路主要包含SP3T开关、2.4~2.5GHz低噪声放大器、SPST旁路开关和用于驱动低噪放和开关的逻辑转换电路。
2.1 射频开关设计
在本电路中,射频开关部分的主要作用是切换射频支路并隔离各个通道干扰,本芯片中的开关电路主要有两部分,一部分是切换RX、TX、BT到天线ANT支路的SP3T开关,另外一部分是用于旁路LNA的SPST开关。由于本电路的核心指标为接收通道的噪声系数和发射通道的功率容量,因此插损和功率处理能力指标是开关电路中FET管尺寸优化选择的主要依据。
在确定选择双栅结构的器件基础上,再根据插损指标和饱和电流优化器件尺寸,0.5um栅长的D-FET饱和电流约为230mA/mm,按照电流有效值和特性阻抗乘积约等于有效功率的计算方法,1mm以上的器件可以满足28dBm左右的功率处理能力要求,然后根据foundry提供的砷化镓双栅结构场效应管两端口等效开关模型来仿真插损指标。
2.2 低噪声放大器设计
用于接收支路最前级的低噪声放大器是影响接收信号灵敏度的最关键元器件,本设计中,接收支路的低噪声放大器的设计决定了整个电路的噪声系数和增益,为了使用方便,低噪放的前后级匹配电路全部在片上实现,且本工艺平台中E-mode PHEMT器件具有正向开启电压的特点,有利于单电源工作,因此选用E-mode器件作为低噪放的核心有源器件。
由于设计要求所有匹配电路都集成在片上,因此整个芯片的布局较为紧凑。如果选用片上平面螺旋电感,在该频段,电感所占面积较大,损耗较大,影响噪声系数性能,因此,最终选用体电阻作为栅极偏置电路元件,并根据晶体管尺寸大小和电路进一步优化选择合适的阻值,以同时达到扼流和选择工作点的作用,经过ADS仿真,电阻值选择4.5K欧姆左右,栅极工作点在+0.4V,工作电流约为15mA。
此外,在低噪声有源偏置电路设计中考虑了一个温度补偿作用,如下图1所示,Q1和Q2组合成标准的电流镜电路,R1电阻分压起负反馈作用,为低噪声放大器提供稳定的Vgs。由于有源偏置电路的晶体管和低噪声放大器的晶体管有相同的加工工艺与过程,因此具有相类似的温度特性,这就使得温度变化时电流镜电路 Vbias和 Vgs 能够互相制约[2]。
2.3 逻辑电路设计
驱动电路部分采用的是经典的DCFL式逻辑电路,这种电路其中具有构成器件少、级间可直接耦合、单一电源工作以及功耗低等优点[3],可降低砷化镓逻辑电路规模。
倒相器的上升时间和下降时间由负载管和驱动管的电流能力来决定,也即是由两个管子的宽长比来决定,这样,通过计算不同宽长比时的上升下降时间,就可以得到满足设计要求所需的器件尺寸。本电路中实际设计的逻辑电路包含倒相电路和一个三输入与门的功能,如下图2所示。
在驱动电路设计中,选择适当的电阻和倒相电路有源器件尺寸的比例关系,可以优化控制电平的高低门限。本设计中,在保证承受发射功率所需工作电压的前提下,电路可满足0/2.8V-3.3V驱动信号标准。
三、封装及测试结果
针对该芯片的主要用途在于WIFI无线传输系统中的收发终端设备中,设计人员开发了适用于该芯片管脚功能的QFN1.5mmX1.5mm-12L的小尺寸塑封形式,根据管脚定义,合理的分配了Leadframe支架结构,在使得芯片内部良好接地的同时,又保证了芯片封装尺寸的余量,同时开发了弹簧接触式测试夹具,可做到进行无损伤外观测试。
小信号主要性能如下表1所示:
四、结论
采用0.5um线条的砷化镓PHEMT E/D-mode工艺设计的2.4GHz WIFI用接收前端集成电路,具有增益高、噪声低、发射损耗小、功耗低等优点。在2.2-2.6GHz工作频率范围内,增益大于12.5dB,噪声系数小于2dB,输入输出电压驻波比小于2:1,发射通道和蓝牙通道插损小于0.7dB,发射通道和蓝牙通道功率容量大于+28dBm,并集成驱动器和匹配电路,使用方便,适用于满足802.11 b/g/n协议下的2.4GHz WIFI无线传输系统。
参考文献
[1] RTC6627,Highly integrated,Receive Path Front End Module, Data Sheet,RichWave.
[2] 吴健,郑远等.0.5dB噪声系数高线性有源偏置低噪声放大器[J].固体电子学研究与进展,2014,34(3):211-215.
[3] 许正荣,应海涛等.内置驱动器的砷化镓高隔离开关芯片[J].固体电子学研究与进展,2012,32(4):365-369.
中图分类号:TN432 文献标识码:A 文章编号:1009-914X(2015)44-0267-02
一、引言
随着砷化镓集成电路工艺的技术革新,尤其是新型的E/D PHEMT工艺平台的出现和成熟,使得多种器件可以在同一个标准工艺平台上被加工出来,0.5um线条的E/D PHEMT砷化镓材料技术及工艺可将增强型和耗尽型器件集成在同一个晶圆上,可将多种不同功能的电路集成到在一颗芯片上,这也是目前射频前端简化设计的主流趋势。
二、电路设计
该芯片应用于满足802.11 b/g/n标准的无线局域网,用于无线射频信号的收发[1],该芯片内部电路主要包含SP3T开关、2.4~2.5GHz低噪声放大器、SPST旁路开关和用于驱动低噪放和开关的逻辑转换电路。
2.1 射频开关设计
在本电路中,射频开关部分的主要作用是切换射频支路并隔离各个通道干扰,本芯片中的开关电路主要有两部分,一部分是切换RX、TX、BT到天线ANT支路的SP3T开关,另外一部分是用于旁路LNA的SPST开关。由于本电路的核心指标为接收通道的噪声系数和发射通道的功率容量,因此插损和功率处理能力指标是开关电路中FET管尺寸优化选择的主要依据。
在确定选择双栅结构的器件基础上,再根据插损指标和饱和电流优化器件尺寸,0.5um栅长的D-FET饱和电流约为230mA/mm,按照电流有效值和特性阻抗乘积约等于有效功率的计算方法,1mm以上的器件可以满足28dBm左右的功率处理能力要求,然后根据foundry提供的砷化镓双栅结构场效应管两端口等效开关模型来仿真插损指标。
2.2 低噪声放大器设计
用于接收支路最前级的低噪声放大器是影响接收信号灵敏度的最关键元器件,本设计中,接收支路的低噪声放大器的设计决定了整个电路的噪声系数和增益,为了使用方便,低噪放的前后级匹配电路全部在片上实现,且本工艺平台中E-mode PHEMT器件具有正向开启电压的特点,有利于单电源工作,因此选用E-mode器件作为低噪放的核心有源器件。
由于设计要求所有匹配电路都集成在片上,因此整个芯片的布局较为紧凑。如果选用片上平面螺旋电感,在该频段,电感所占面积较大,损耗较大,影响噪声系数性能,因此,最终选用体电阻作为栅极偏置电路元件,并根据晶体管尺寸大小和电路进一步优化选择合适的阻值,以同时达到扼流和选择工作点的作用,经过ADS仿真,电阻值选择4.5K欧姆左右,栅极工作点在+0.4V,工作电流约为15mA。
此外,在低噪声有源偏置电路设计中考虑了一个温度补偿作用,如下图1所示,Q1和Q2组合成标准的电流镜电路,R1电阻分压起负反馈作用,为低噪声放大器提供稳定的Vgs。由于有源偏置电路的晶体管和低噪声放大器的晶体管有相同的加工工艺与过程,因此具有相类似的温度特性,这就使得温度变化时电流镜电路 Vbias和 Vgs 能够互相制约[2]。
2.3 逻辑电路设计
驱动电路部分采用的是经典的DCFL式逻辑电路,这种电路其中具有构成器件少、级间可直接耦合、单一电源工作以及功耗低等优点[3],可降低砷化镓逻辑电路规模。
倒相器的上升时间和下降时间由负载管和驱动管的电流能力来决定,也即是由两个管子的宽长比来决定,这样,通过计算不同宽长比时的上升下降时间,就可以得到满足设计要求所需的器件尺寸。本电路中实际设计的逻辑电路包含倒相电路和一个三输入与门的功能,如下图2所示。
在驱动电路设计中,选择适当的电阻和倒相电路有源器件尺寸的比例关系,可以优化控制电平的高低门限。本设计中,在保证承受发射功率所需工作电压的前提下,电路可满足0/2.8V-3.3V驱动信号标准。
三、封装及测试结果
针对该芯片的主要用途在于WIFI无线传输系统中的收发终端设备中,设计人员开发了适用于该芯片管脚功能的QFN1.5mmX1.5mm-12L的小尺寸塑封形式,根据管脚定义,合理的分配了Leadframe支架结构,在使得芯片内部良好接地的同时,又保证了芯片封装尺寸的余量,同时开发了弹簧接触式测试夹具,可做到进行无损伤外观测试。
小信号主要性能如下表1所示:
四、结论
采用0.5um线条的砷化镓PHEMT E/D-mode工艺设计的2.4GHz WIFI用接收前端集成电路,具有增益高、噪声低、发射损耗小、功耗低等优点。在2.2-2.6GHz工作频率范围内,增益大于12.5dB,噪声系数小于2dB,输入输出电压驻波比小于2:1,发射通道和蓝牙通道插损小于0.7dB,发射通道和蓝牙通道功率容量大于+28dBm,并集成驱动器和匹配电路,使用方便,适用于满足802.11 b/g/n协议下的2.4GHz WIFI无线传输系统。
参考文献
[1] RTC6627,Highly integrated,Receive Path Front End Module, Data Sheet,RichWave.
[2] 吴健,郑远等.0.5dB噪声系数高线性有源偏置低噪声放大器[J].固体电子学研究与进展,2014,34(3):211-215.
[3] 许正荣,应海涛等.内置驱动器的砷化镓高隔离开关芯片[J].固体电子学研究与进展,2012,32(4):365-369.