论文部分内容阅读
1.设定义域为R 的函数f(x)、g(x)的反函 数分别为p(x)、g(x),并 且函数f(x+1)和g(x-2)的图像关于直线y=x对称,若g(5)=2002,那么f(6)=______。 [命题意图]本题考查考生对反函数的定义、图像和性质,复合函数的概念和抽象的函数符号的理解和应用。这虽是一道填空题,但题目涵盖知识点多、信息量比较大,处理方法灵活,既有对基本概念、通解通法的考查,又需要考生有较强的阅读、处理信息的能力,能通过深入理解相关概念,灵活
1. Let the inverse functions of the functions f(x) and g(x) defined by the domain R be p(x), g(x), and the images of the functions f(x+1) and g(x-2) Regarding the straight line y=x symmetry, if g(5)=2002, then f(6)=______. [Proposition Intent] This question examines the candidate’s definition, image and nature of the inverse function, the concept of the compound function, and the understanding and application of the abstract function symbol. Although this is a blank-filling question, the topics cover more knowledge points, larger amounts of information, and flexible processing methods. They not only examine basic concepts and general methods, but also require candidates to have strong ability to read and process information. Through in-depth understanding of related concepts, flexibility