论文部分内容阅读
将Rough集理论应用于规则归纳系统,提出了一种基于粗糙集获取规则知识库的增量式学习方法,能够有效处理决策表中不一致情形,采用启发式算法获取决策表的最简规则,当新对象加入时在原有规则集基础上进行规则知识库的增量式更新,避免了为更新规则而重新运行规获取算法。并用UCI中多个数据集从规则集的规则数目、数据浓缩率、预测能力等指标对该算法进行了测试。实验表明了该算法的有效性。