论文部分内容阅读
假设对于两个流形上关联性较强的样本点,其邻域点之间也会具有较强的关联性.基于此假设,提出一种新的非监督流形对齐算法,通过学习局部邻域之间的关联性,挖掘不同流形样本点间的关联性;然后,将两个流形样本点投影到共同的低维空间,同时保持所挖掘的关联性.结果表明:与传统的非监督流形对齐算法比较,文中算法能更准确地找出不同流形数据在低维空间的匹配点.