论文部分内容阅读
针对可变形部件模型(DPM)算法在行人检测领域中的检测精度高,但由于在特征提取和行人定位两步中的计算量过大,导致检测速度过慢而不能应用于实时行人检测的问题,提出了一种融合分支定界算法和级联检测算法的可变形部件模型(BBCDPM)算法。首先,选取梯度方向直方图(HOG)特征作为描述人体目标的特征,从而生成特征金字塔;然后,进行可变形部件模型的建模,并使用隐变量支持向量机(LSVM)对模型进行训练;同时,为了提高行人检测的准确度,将传统可变形部件模型算法中的5个部件模型增加到了8个;最后,在利用了级联检