论文部分内容阅读
为了及时、准确地对老年人跌倒行为进行检测,保障老年人的养老安全,提出一种基于人体姿态的跌倒检测方法。首先将视频图像送入到OpenPose算法中获取图像中人体的姿态信息,再利用三维卷积神经网络提取视频中人体姿态变化的时空特征。通过对局部特征的重新组合,得到抽象的全局特征进行跌倒检测。实验结果表明,所提出的跌倒检测方法计算复杂度低,对跌倒行为的平均正确检测率为98.32%,对其他日常行为的平均误检率为2.84%,兼顾了准确性和实时性的要求。