论文部分内容阅读
为了解决监测区域的传感器节点部署问题,设计了一种基于概率感知模型和量子粒子群算法的移动节点部署方法。首先,在传统概率感知模型中加入节点剩余能量因素进而得到改进的概率感知模型C(si,p)={0,if d(si,p)≥r-reEir/Ei0e-λασ,if d(si,p)≤r+re,1,if r-re≤d(si,p)≤r+re然后基于改进的概率感知模型设计了多目标优化的节点部署模型,在优化模型中考虑了网络覆盖率和能量因素。最后定义了基于量子粒子群算法来获得节点的最优位置对应的Pareto最优解的优化算法(即将粒子编码为节点部署方案,采用最小化网络能耗和最大化网络覆盖率为粒子的Pareto目标,引导粒子在可行解空间不断更新位置寻求最优解)。仿真实验结果表明:文中方法能正确地实现监测区域的传感器节点部署,能实现较为均匀的网络覆盖,与其他方法相比,具有较高的网络覆盖率和较长的网络生命周期,具有较大的优越性。
In order to solve the sensor node deployment problem in monitoring area, a mobile node deployment method based on probability perception model and quantum particle swarm optimization algorithm was designed. Firstly, we add the node residual energy factor to the traditional probability perception model to get the improved probability perception model C (si, p) = {0, if d (si, p) ≥ r-reEir / Ei0e-λασ, if d Then we design a multi-objective optimization node deployment model based on the improved probability perception model, and consider the network coverage in the optimization model Rate and energy factors. Finally, we define the optimal algorithm of Pareto optimal solution based on quantum particle swarm algorithm to get the optimal position of the node (ie, code the particle as the node deployment scheme, adopt the Pareto target that minimizes the network energy consumption and maximizes the network coverage as the particle , Guide particles in the feasible solution space constantly updated position to find the optimal solution). The simulation results show that the proposed method can correctly deploy the sensor nodes in the monitoring area and achieve a more uniform network coverage. Compared with other methods, the proposed method has higher network coverage and longer network lifetime, The superiority.