【摘 要】
:
Rechargeable aluminum batteries are believed as a promising next-generation energy-storage system due to abundant low-cost Al sources and high volumetric specific capacity.The Al-storage cathodes,how-ever,are plagued by strong electrostatic interaction be
【机 构】
:
Department of Energy and Materials Engineering,Dongguk University-Seoul,Seoul 04620,Republic of Kore
论文部分内容阅读
Rechargeable aluminum batteries are believed as a promising next-generation energy-storage system due to abundant low-cost Al sources and high volumetric specific capacity.The Al-storage cathodes,how-ever,are plagued by strong electrostatic interaction between host materials and carrier ions,leading to large overpotential and undesired cycling stability as well as sluggish ion diffusion kinetics.Herein,sulfur-linked carbonyl polymer based on perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA) as the cathode materials for ABs is proposed,which demonstrates a small voltage polarization (135 mV),a reversible capacity of 110 mAh g-1 at 100 mA g-1 even after 1200 cycles,and rapid Al-storage kinetics.Compared with PTCDA,the sulfide polymer possesses higher working voltage because of its lower LUMO energy level according to theoretical calculation.The ordered carbonyl active sites in sulfide polymer contribute to the maximized material utilization and rapid ion coordination and dissociation,resulting in superior rate capability.Besides,the bridged thioether bonds endow the polysulfide with robust and flexible structure,which inhibits the dissolution of active materials and improves cycling stability.This work implies the importance of ordered arrangement of redox active moieties for organic electrode,which provides the theoretical direction for the structural design of organic materials applied in multivalent-ion batteries.
其他文献
Spectroscopic characterization of CO activation on multiple metal-containing catalysts remains an impor-tant and challenging goal for identifying the structure and nature of active site in many industrial pro-cesses such as Fischer-Tropsch chemistry and a
The wide use of manganese dioxide (MnO2) as an electrode in all-solid-state asymmetric supercapacitors(ASCs) remains challenging because of its low electrical conductivity.This complication can be circum-vented by introducing trivalent gadolinium (Gd) ion
Li-O2 batteries gain widespread attention as a candidate for next-generation energy storage devices due to their extraordinary theoretic specific energy.The semi-open structure of Li-O2 batteries causes many parasitic reactions,especially related to water
Tin phosphide (Sn4P3) is a promising anode material for sodium-ion batteries because of its relatively large theoretical capacity,appropriate Na+ alloying potential,and good cyclic stability.Herein,the Sn4P3 embedded into a carbon matrix with good rate pe
The performances of heterogeneous catalysts can be effectively improved by optimizing the catalysts via appropriate structure design.Herein,we show that the catalysis of cuprous sulfide can be boosted by con-structing the hybrid structure with Cu2S nanopa
A large database is desired for machine learning (ML) technology to make accurate predictions of mate-rials physicochemical properties based on their molecular structure.When a large database is not avail-able,the development of proper featurization metho
Ni-rich layered cathodes (LiNixCoyMnzO2) have recently drawn much attention due to their high specific capacities.However,the poor rate capability of LiNixCoyMnzO2,which is mainly originated from the two-dimensional diffusion of Li ions in the Li slab and
Covalent organic frameworks (COFs) are emerging as powerful electrochemical energy storage/conversion materials benefiting from the controlled pore and chemical structures,which are usually determined by the regulation of the molecular building blocks,In
Proton exchange membrane fuel cells (PEMFCs) are regarded as one of the most promising clean energy technology because of their high energy density,silent emission-free operation,and wide applications [1].Recently,anion exchange membrane fuel cells(AEMFCs
The high degree of crystallinity of discharging intermediates of Li-S batteries (Li2S2/Li2S) causes a severe capacity attenuation at low temperatures.Herein,a sulfur-rich polymer is fabricated,which enables all the discharging intermediates to exist in an