论文部分内容阅读
为探究遥感监测水稻冠层叶片氮素含量的较优高光谱反演模型,以水稻小区试验为基础,获取了不同生长期水稻冠层高光谱数据。在综合比较一阶导数变换(1-Der)、标准正态变量变换(SNV)和SG滤波法等处理方法基础上,提出一种将SNV与一阶导数变换的SG滤波法相结合的光谱处理方法(SNV-FDSGF),并将处理后的数据经无信息变量消除法(UVE)与竞争自适应重加权采样法(CARS)选出不同生长期的敏感波段。将各生长期的敏感波段两两随机组合,并构建与水稻叶片含氮量相关性较高的差值光谱植被指数(DSI)、比值光谱植被指