基于块A~*正交匹配追踪的多传感器数据联合重构算法

来源 :电子与信息学报 | 被引量 : 7次 | 上传用户:stephenz2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
针对A*正交匹配追踪(A*OMP)算法计算复杂高,且不能利用信号的结构稀疏性这一缺陷,该文提出了块A*OMP算法并将其用于解决分布式压缩感知中的信号联合重构问题。该算法用原子块取代单个原子作为搜索树中的节点,在计算路径代价时用搜索树中所有路径的最大长度取代信号的稀疏度。然后在块A*OMP算法的基础上,选择与残差矩阵投影误差最小的原子块作为新的节点,得到了一种用于解决MMV(Multiple Measurement Vector,MMV)问题的块A*OMP算法,并利用该算法对相邻区域内的多个传感器所测
其他文献
该文在扩展卡尔曼粒子滤波算法的基础上融合了"负"信息(没有接收到观测值的扫描)来实现远距离干扰环境下的目标跟踪。在整个实现过程中,由传感器模型推导出的高斯和似然函数充分考虑了正负信息,直接用于计算粒子权重更新。并且通过扩展卡尔曼滤波算法产生重要性密度函数,利用当前时刻的量测,使得粒子的分布更接近其后验概率分布,而且使用较少的粒子个数即可达到较好的跟踪效果。仿真证明,扩展卡尔曼粒子滤波算法在航迹连续