论文部分内容阅读
大型回转体超声探伤中由于需要实时处理大量数据,且全面的缺陷特征信息难以获得,导致缺陷类别在线识别困难.对多个超声波探头获取的同一缺陷的互补特征信息,利用BPNN的并行计算能力分别进行缺陷类别的局部决策,再采用D—S理论实现缺陷类型的融合识别.为使神经网络更适合于在线数据处理和缺陷识别,对标准BP算法进行了改进,在不增加计算量和存储量的前提下,避免了网络陷入局部最小,提高了网络的收敛速度.将改进后的BP网络的非线性建模能力与D—S证据理论的不确定性推理能力进行有机结合,使论据理论的支持度的分配避免了主观性,