论文部分内容阅读
传统基于深度置信网络(deep belief network,DBN)的合成孔径雷达(Synthetic Aperture Radar,SAR)图像分类方法受相干斑噪声影响严重,文章通过引入图像的纹理特征作为先验信息,反映像素间的空间关系和不同地物类型的独有特性,提出了一种基于GLCM-GMRF纹理特征和DBN的SAR图像分类方法。该方法利用灰度共生矩阵(gray level co-occurrence matrix,GLCM)提取SAR图像在空间上的灰度相关特征,同时利用高斯马尔可夫随机场(Gaussi