论文部分内容阅读
本研究为B超诊断脂肪肝建立计算机辅助诊断手段。通过分析正常肝和脂肪肝B超图像的图像特征,包括图像的近远场灰度比特征,以及灰度共生矩阵的角二阶矩、熵和反差分矩统计特征,组成特征矢量.再分别用κ-平均聚类算法、自组织特征映射人工神经网络和反向传播人工神经网络对特征矢量进行分类处理。κ-平均聚类算法对正常肝的识别率为100%,对脂肪肝的识别正确率为63.6%;自组织特征映射人工神经网络对正常肝的识别正确率达100%,对脂肪肝的识别正确率达93.94%;反向传播人工神经网络对正常肝和脂肪肝的识别率均为100%。本