论文部分内容阅读
提出了一种基于监控视频的异常事件识别模型,该模型可以实时监测视频中的前景目标,并通过分析目标的运动信息判断是否有异常事件的发生。首先,采用背景建模的混合高斯算法提取前景目标;然后,用金字塔迭代的L-K特征点跟踪算法得到前景的光流运动信息,并通过分析前景的面积比例、速度方差、整体熵判断视频中是否有异常事件的发生;最后,利用爆炸、人群短时聚集和分散两种异常事件做仿真实验。结果表明,该模型可以准确提取前景目标区域,并可以快速、精准地判断监控视频中的异常事件,可以为管理部门及时发现和控制异常事件提供有效的帮助。