论文部分内容阅读
在计算机视觉领域,针对小角度俯拍下的站台人群计数的研究工作较少,且计数精度普遍较低。人群计数算法往往通过图像分割识别出图片中的所有行人个体,并进行数量统计,具有很重要的现实意义。然而现有的图像分割算法往往只能适用于简单场景下的简单分割任务。由于小角度俯拍下的站台场景中存在行人近大远小、行人互相遮挡和行人轮廓姿态多样等原因,因此给有效分割计数带来了较大的挑战。针对这一任务,提出了距离自适应卷积神经网络(Distance Adaptive Convolutional Neutral Network,简称DAC