超尺度自导注意力网络的遥感船舶识别

来源 :计算机工程 | 被引量 : 0次 | 上传用户:eight92
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
传统多尺度卷积神经网络因接收域有限,难以对超尺度变化的空间目标进行建模。提出一种遥感船舶的超尺度自导注意力网络(HSSGAN)识别框架,通过组连接的轻量级超尺度子空间模块捕获船舶的超尺度特征和尺度不变性,使用自导注意力网络逐步细化超尺度特征图,并在超尺度局部和全局语义之间建立长期依赖关系以增强类之间特征图的差异性。同时,通过忽略不相关信息及聚合相关特征以增强目标船舶的识别性。实验结果表明,与TP-FCN、CF-SDN和HSF-Net方法相比,HSSGAN方法具有更好的识别效果,F1-Score值为0
其他文献
Lake Baikal is the biggest reservoir of fresh water with unique flora and fauna; presently it is negatively affected by climate change, water warming, industrial emissions, shipping, touristic activities, and Siberian forestfires. The assessment of air po
针对单模态身份认证方法存在特征单一容易被伪造和攻破的问题,提出基于用户行为足迹的多模态特征融合隐式身份认证方法。在移动设备中采集用户使用设备时的触摸压力、触摸轨迹、加速度等传感器数据,利用特征选择技术提取触摸屏交互、移动模式、物理位置等特征并对其进行训练与融合,最终通过多模态特征融合模型实现用户身份认证。实验结果表明,该方法采用的特征级融合和决策级融合方式均获得了98%以上的认证准确率,相比单模态身份认证方法更难以被伪造和攻破,且认证准确率更高、稳定性更强。
TextRank使用共现窗口代替PageRank网页超链接以判断词语关系,但共现窗口机制下的词汇图是无向图,且实际中文文本中词语与其共现窗口内的词语之间在多数情况下没有认知上的指向性链接关系,导致共现窗口机制下的词语关系与PageRank网页超链接关系存在较大差别。为此,提出一种融合语义特征的关键词抽取方法S-TextRank。在TextRank方法的基础上以依存关系代替共现窗口判断词语关系,以模拟PageRank网页指向性超链接。对不同词性词语赋予相应的权重系数,从而模拟不同性质网页的重要程度。在此基础
现有图像描述模型存在解码端层次不深、训练效率低下的问题,且生成的描述语句在语言连贯性和内容多样性方面效果欠佳,为此,提出一种基于独立循环神经网络的深层图像描述模型Deep-NIC。采用独立循环神经元与批标准化方法构建解码单元,通过解码单元的多层叠加建立深层解码端。使用谷歌inception V3作为编码端,构建深层图像描述模型。在数据集MS COCO2014上进行对比实验,结果表明,与基线模型相比
车载自组织网络(VANET)中的高速移动性节点和动态的网络拓扑结构使得车辆间通信链路存在传输时延长、连接时间短的问题。通过引入双簇头选择算法,提出一种改进的AODV路由协议(AODV-CMIRP),用于VANET的连通性维护。利用分簇技术降低全局网络拓扑的动态性,通过引入节点的相对移动度和相对速度作为簇头选择指标,并选取辅助簇头节点以延长车载自组织网络整体生存时间。仿真结果表明,在保证网络连通性和稳定性的前提下,相比CBDRP和AODV协议,AODV-CMIRP协议具有较低的平均端到端时延和较高的分组投递
泛在电力物联网具有接入节点数多、设备资源受限的特点,易发生网络拥塞而导致电力信息流丢失、时延过大等问题。基于受限应用协议(CoAP)的泛在电力物联网应用层通信架构,提出一种链路稳定性的CoAP拥塞控制(L-CoCC)算法。通过强、弱和失败消息往返时间来确定网络环境状态并平滑估计超时重传时间(RTO),根据超时重传次数和消息往返时间抖动值,引入下界RTO限制方法和更新老化概念,避免出现不必要的重传。
针对道路分割时存在的梯度消失问题,构建基于U-Net的卫星道路图像语义分割模型。通过密集连接模块减少梯度消失,并引入空间空洞金字塔结构保留更多的图像特征,在学习深层次特征信息时采用注意力监督机制,提取道路要素的特征信息。在卫星图像道路数据集上的测试结果表明,与FCN、SegNet、U_Net算法相比,该算法模型的准确率、召回率和精确率指标分别达到96.3%、96.9%和96.6%,能够有效地对道路
深度学习能够提高光学遥感图像场景分类的准确率和效率,但光学遥感图像语义丰富,部分场景仍存在易误分类的情况,同时由网络模型规模扩大带来的硬件要求过高、时间成本消耗过大等问题制约着深度学习网络模型的推广应用。为此,提出一种基于轻量化网络模型的光学遥感图像场景分类方法。通过EfficientNet网络提取图像特征,对图像特征进行复合提取以生成语义信息更丰富的新特征,利用多个子分类器构建集成学习模块解析新
无人机自组网的高动态特性以及节点能量高度受限的特点,使得传统路由协议难以适用于无人机网络。针对该问题,在OLSR协议的基础上提出一种无人机网络适用路由(UAV-OLSR)算法。依据链路变化情况实现无人机集群状态感知,综合考虑节点能量、节点位置等因素进行节点质量评估。采用多径思想并通过特定的路径度量准则选择较优路径进行数据转发。仿真结果表明,与OLSR和AODV协议相比,UAV-OLSR具有更低的数据包平均传输延迟、更高的数据包投递率以及更好的能量均衡效果,可以延长无人机网络的生存时间。
针对真实场景下安全帽佩戴检测面临的背景复杂、干扰性强、待检测目标较小等问题,在SSD算法的基础上,提出改进的MobileNet-SSD算法。通过引入轻量型网络MobileNet并构建MobileNet-SSD算法提高检测速度,采用迁移学习策略克服模型训练困难问题。从施工相关视频中获取真实环境下的安全帽样本构建样本集,以解决当前安全帽数据集规模较小、网络难以充分拟合特征的问题。实验结果表明,Mobi