论文部分内容阅读
采用线性预测方法对信号进行边界延拓,改进EMD方法,应用EMD(经验模态分解)对战场声信号进行分解,对分解得到的有限个IMF(本征模态函数)进行FFT,求得其相应的幅值谱,进而得到其能量。选择每一个IMF的能量相对于原始信号总能量的能量比作为特征向量,并将其归一化。最后,设计神经网络分类器对不同类战场声目标进行分类与识别。实验结果表明,基于EMD和能量比的战场声目标分类与识别,分类效果显著,识别率较高。