基于增强现实和人脸姿态估计的虚拟试戴技术

来源 :计算机系统应用 | 被引量 : 0次 | 上传用户:wrmfw315
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
得益于增强现实技术,虚拟信息能够在真实世界中予以体现和融合,使得脱离实体的虚拟信息在现实世界中的应用场景不断泛化.基于此,本文提出了一种高效实时的虚拟试戴技术,可运用于多种实际场景中.比如在电商场景下,用户购买商品前可在先线上选择相应款式的模型文件进行虚拟试戴,并根据效果辅助决策.拟议方法依据人脸姿态参数将模型文件映射至可与实时视频流加合的图形状态,在特定区域加合后反馈给视频帧中,最终加合的模型文件能够自适应头部的位置变化.实验结果表明,拟议方法在人脸远近位置、图形渲染以及佩戴实时性等方面具有较好的效果.
其他文献
针对数据分类预测模型的生成中,高度不平衡的训练数据会大幅降低模型的性能,本文提出了一种改进的基于遗传思想的不平衡数据集过采样方法,该方法从生物染色体遗传理论中得到启发,利用近亲生成相似而又不完全相同的新实例来平衡多数类,在保证样本分布不变的前提下,减弱甚至消除不平衡数据对训练结果的偏差影响.最后,通过在公共数据集上的对比实验表明,该方法取得了更高的召回率及G-mean值,证明此改进方法行之有效,所生成模型的综合性能有所提高.
汉字书法是中华传统文化的代表,但是,由于书法字体具有风格迥异、结构复杂、变形繁多等特点,给大众学习和欣赏书法带来了极大障碍.为了解决普通老百姓解读书法作品的困难,提出一种基于改进DenseNet网络的书法字体识别算法,设计区域权值比例池化规则替换传统DenseNet网络的最大池化和平均池化规则,采用Nadam算法优化模型训练效果,进行自适应学习率调整,此外,提出基于剪枝技术的模型裁剪策略,在保证识别性能的同时,提高了模型的训练效率.实验结果表明,在由楷书、行书、隶书和篆书4类字体组成的混合字体数据集中,本