论文部分内容阅读
以YOLOv2网络作为目标检测的基础模型,为提高模型检测群簇小目标的准确率,在YOLOv2中加入残差网络,构成YOLO-R网络,通过构建行人和骑行者样本库,以及修改anchor boxes尺寸等网络参数,训练出更适合检测行人和骑行者目标的网络模型,并通过匹配算法完成行人、骑行者分类,进一步运用Kalman滤波实现多目标跟踪。试验结果表明:在训练样本、网络参数相同的情况下,YOLO-R比YOLOv2网络的平均精度均值(mAP)提高了3.4%,在满足速度要求的前提下,YOLO-R网络检测效果更优。