论文部分内容阅读
伴随着电子邮件的广泛使用,垃圾邮件泛滥成灾,严重影响了人们正常的学习、工作和生活.本文针对目前的垃圾邮件主要是由多种商业或政治性类别的垃圾邮件组成的特点,利用学习向量量化网络能把多个子类合并成一个复杂大类的特性,构建了一个反垃圾邮件的LVQ神经网络模型,我们对该LVQ网络模型进行了与其他算法的对比试验,试验表明它比基于贝叶斯公式算法和基于神经网络BP算法的过滤器有更好的性能.