论文部分内容阅读
基于水平层分析法的思想,采用薄层微元法,推导了考虑挡墙墙高、墙背倾角、填料面仰角、均布超载、填料重度、填料摩擦角、填料与墙背粘结力和摩擦角(外摩擦角)等条件下的粘性土被动土压力公式的解析解,采用图解法给出了临界破裂角的显式解答。并分析了这些因素对被动土压力临界破裂角、被动土压力强度分布、土压力合力大小和作用点位置的影响。结果表明,被动土压力强度沿墙高呈非线性分布;现行库伦和朗肯理论下的被动土压力公式均为被动土压力公式在相应简化假设条件下的一种特例。墙背倾角、填料面仰角、均布超载、填料粘聚力、内摩擦角、外摩擦角等对被动土压力大小和分布情况影响显著,填料重度对土压力合力作用点影响不大。
Based on the idea of horizontal layer analysis method, the thin layer method is used to deduce the influence of wall height, back wall angle, elevation angle of filler surface, uniform load, filler weight, filler friction angle, The friction angle (external friction angle) and other conditions of the analytic solution of the passive earth pressure formula of cohesive soil, the explicit solution to the critical fracture angle is given by the graphic method. The influence of these factors on the critical fracture angle of passive earth pressure, the distribution of passive earth pressure, the resultant force of earth pressure and the position of action point are analyzed. The results show that the passive earth pressure intensity is non-linearly distributed along the wall height. The passive earth pressure formulas under the current Coulomb and Rankine’s theories are all a special case of the passive earth pressure formula under the corresponding simplifying assumptions. The angle of wall dorsal angle, packing surface elevation, uniform load, filler cohesion, internal friction angle and external friction angle have significant influence on the size and distribution of passive earth pressure. The heavy material filling has little effect on the interaction of soil pressure.