论文部分内容阅读
摘要:目前高精度的高程仍以水准测量为主,在山区地形起伏较大时水准测量难度比较大,主要采用三角高程测量。本论文主要利用索佳NET05全站仪采用三角高程测量原理进行高差测量,通过实例分析可以得出,在一定情况下索佳NET05全站仪可以替代三等水准测量,能够满足相应的精度要求。本文利用全站仪所测的高程作为起点,对地表岩移进行观测,通过分析得出矿区地表岩移沉降符合规程要求。
关键词:全站仪;三角高程;精度
中图分类号:O353文献标识码: A
引言
近几年全站仪在工程施工测量中的广泛应用,以及随着生产力和科学技术的发展,国民经济各部门和各学科对工程测量提出了新的要求。索佳NET05全站仪属于精密仪器中的代表,是一种集激光、计算机、微子通讯、精密机械加工等高精尖技术于一体的先进量仪器,自动化程度高、功能多、精度好。 高程测量方法主要有几何水准测量、三角高程测量、物理测量、GPS高程测量方法。三角高程测量方法是一种间接测量方法,通过观测的距离和角度,根据三角函数原理计算出两点之间的高差[1]。
本论文主要是利用索佳NET05全站仪,采用三角高程测量方法把矿区工业广场楼顶的水准原点,采用符合水准路线推算出地面点的高程。利用地面点的高程进行矿区周围采空区的地表岩层移动,通过分析得出地表变化规律明显,符合规程要求。
1 三角高程测量
1.1 三角高程测量原理
常见的三角高程测量方法有单向观测法、中间法和对向观测法[1,2]。下面具体来看一下三角高程测量原理。(如图1)
图1三角高程测量原理
(1)测定地面A、B两点间高差h,首先在A点安置仪器,在B点竖立标尺,量取仪器望远镜旋转轴中心I至地面点A的仪器高i,用望远镜十字丝的横丝照准B点标尺上的一点M,M至B点的垂直高度称为目标高v,测出倾斜视线与水平线间所夹的竖直角a,测出A、B两点间的水平距离为D,由图可得两点间的高差h为:
(1)
若A点的高程已知为,则B点高程为:
(2)
(2)若在A点安置全站仪,在B点安置棱镜,并分别量取仪器高和棱镜高,测得两点间斜距S与竖直角以计算两点间的高差,称光电测距三角高程测量,A、B两点间的高差可按下式计算:
(3)1.2 精度分析
(1)地球曲率对高差的影响
水准测量中地球曲率的影响可以在观测中使用前后视距相等来抵消。三角高程测量在一般情况下也可以将仪器设在两点等距离处进行观测,或在两点上分别安置仪器进行对向观测并计算各自所测得的高差取其平均值 [3,4]。高差计算公式如下:
(4)
式中:表示两点之间的高差
表示垂直角
表示大气遮光系数
表示地球曲率半径
(2)距离归算
实测距离与参考椭球面上边长s的关[5.6]
(5)
因式中项的数值很小,故未顾及与s之间的差异。
(3)精度分析
(6)
查阅相关文献可以得出,在不同的时间段进行单向高差观测,,,经过分析可以看出单向观测三角高程测量误差在短距离内,只与竖直角和距离有关系[7]。
2.工程案例分析
2.1水准路线布设及数据采集
本工程主要是在山东省枣庄某矿工业广场内部进行地表岩移观测,根据实际地形要求布设附合水准路线,A点在办公楼三楼的东侧楼顶,F点在工业广场配电室的楼顶,其他点在工业广成内部,具体如下图所示。在观测时记录下当时的温度和气压,观测时采用三角高程单向测法,用索佳NET05全站仪进行观测。(见图2附合水准路线布设图,表1为外业观测数据)
图2 附合水准路线布设
表1索佳NET05全站仪三角高程附合路线观测数据
2.2 计算过程
利用前面的三角高程测量理论,对索佳NET05全站仪所观测的数据将进行数据处理,得到各点的高程(见表2)
表2 索佳NET05全站仪计算各点的高程
此段附合水准路线高差闭合差为-0.0138m。三等水准测量允许的高差闭合差为:,该次水准测量的=19.6mm,而实测高差闭合差为-13.8mm,显然此次索佳NET05全站仪三角高程测量达到了三等水准测量要求。
3 岩移观测
监測线的起点高程根据以上计算得出,根据煤矿测量规程布设走向线自南向北,具体沉降变化趋势(见图3、4)
图3 走向线1沉降变化趋势图
图4 走向线1沉降累计柱形图
由于监测线1布设监测点的方向是自南向北的,走向线的沉降变化量在前半部分是逐渐增大的,在7号点达到最大值,之后是逐渐减小的。从下沉速度分析,可以看出最大期沉降速度出现在11期,从第十四期开始沉降速度出现了减小的趋势,说明下沉量比前几期小了,通过分析后面几期可以得出地表变化趋于稳定,具体的变化趋势符合采空区变化规律。
4.结论
(1)索佳NET05全站仪数据自动记录,可以消除了读数误差,角度观测值可以精确到0.5″;观测距离可以增加到了500m,节约了施工时间。
(2)本论文通过利用索佳NET05全站仪进行三角高程测量以及水准仪进行三等水准测量,对观测结果进行分析可以得出,索佳NET05仪器进行的三角高程测量可以满足三等水准测量的要求。
(3)通过工业广场周围的地表岩移观测分析,可以得出工业广场周围的采空区沉降规律明显,地表变化趋于稳定,符合采空区变化规律。
参考文献
[1] 程代忠,辛国,马耀昌.全站仪代替水准仪研究[J].人民长江.2006.11,37(11),13-15
[2] 许秀凤.全站仪对向观测法三角高程测量精度分析[J].江苏测绘.2001.03,24(1),26-28
[3] 靳海亮,赵常胜等.全站仪三角高程替代四等水准测量精度分析[J].辽宁工程技术大学校报.2005.10,23(5),606-608
[4] 张前勇,钱胜.全站仪水准法三角高程测量探讨[J].湖北民族学院学报.2007.03,25(1),42-45
[5] 何习平.全站仪中间法与水准测量比较[J].水电自动化与大坝监测.2004.08,28(4),37-39
[6] 薛迎春,赵立.用全站仪测量高程精度分析[J].三晋测绘.2004.03,11(1).37-39
[7] 李林.用三角高程测量方法替代四等水准测量可行性研究[J].同煤科技.2005.12,4,37-40
关键词:全站仪;三角高程;精度
中图分类号:O353文献标识码: A
引言
近几年全站仪在工程施工测量中的广泛应用,以及随着生产力和科学技术的发展,国民经济各部门和各学科对工程测量提出了新的要求。索佳NET05全站仪属于精密仪器中的代表,是一种集激光、计算机、微子通讯、精密机械加工等高精尖技术于一体的先进量仪器,自动化程度高、功能多、精度好。 高程测量方法主要有几何水准测量、三角高程测量、物理测量、GPS高程测量方法。三角高程测量方法是一种间接测量方法,通过观测的距离和角度,根据三角函数原理计算出两点之间的高差[1]。
本论文主要是利用索佳NET05全站仪,采用三角高程测量方法把矿区工业广场楼顶的水准原点,采用符合水准路线推算出地面点的高程。利用地面点的高程进行矿区周围采空区的地表岩层移动,通过分析得出地表变化规律明显,符合规程要求。
1 三角高程测量
1.1 三角高程测量原理
常见的三角高程测量方法有单向观测法、中间法和对向观测法[1,2]。下面具体来看一下三角高程测量原理。(如图1)
图1三角高程测量原理
(1)测定地面A、B两点间高差h,首先在A点安置仪器,在B点竖立标尺,量取仪器望远镜旋转轴中心I至地面点A的仪器高i,用望远镜十字丝的横丝照准B点标尺上的一点M,M至B点的垂直高度称为目标高v,测出倾斜视线与水平线间所夹的竖直角a,测出A、B两点间的水平距离为D,由图可得两点间的高差h为:
(1)
若A点的高程已知为,则B点高程为:
(2)
(2)若在A点安置全站仪,在B点安置棱镜,并分别量取仪器高和棱镜高,测得两点间斜距S与竖直角以计算两点间的高差,称光电测距三角高程测量,A、B两点间的高差可按下式计算:
(3)1.2 精度分析
(1)地球曲率对高差的影响
水准测量中地球曲率的影响可以在观测中使用前后视距相等来抵消。三角高程测量在一般情况下也可以将仪器设在两点等距离处进行观测,或在两点上分别安置仪器进行对向观测并计算各自所测得的高差取其平均值 [3,4]。高差计算公式如下:
(4)
式中:表示两点之间的高差
表示垂直角
表示大气遮光系数
表示地球曲率半径
(2)距离归算
实测距离与参考椭球面上边长s的关[5.6]
(5)
因式中项的数值很小,故未顾及与s之间的差异。
(3)精度分析
(6)
查阅相关文献可以得出,在不同的时间段进行单向高差观测,,,经过分析可以看出单向观测三角高程测量误差在短距离内,只与竖直角和距离有关系[7]。
2.工程案例分析
2.1水准路线布设及数据采集
本工程主要是在山东省枣庄某矿工业广场内部进行地表岩移观测,根据实际地形要求布设附合水准路线,A点在办公楼三楼的东侧楼顶,F点在工业广场配电室的楼顶,其他点在工业广成内部,具体如下图所示。在观测时记录下当时的温度和气压,观测时采用三角高程单向测法,用索佳NET05全站仪进行观测。(见图2附合水准路线布设图,表1为外业观测数据)
图2 附合水准路线布设
表1索佳NET05全站仪三角高程附合路线观测数据
2.2 计算过程
利用前面的三角高程测量理论,对索佳NET05全站仪所观测的数据将进行数据处理,得到各点的高程(见表2)
表2 索佳NET05全站仪计算各点的高程
此段附合水准路线高差闭合差为-0.0138m。三等水准测量允许的高差闭合差为:,该次水准测量的=19.6mm,而实测高差闭合差为-13.8mm,显然此次索佳NET05全站仪三角高程测量达到了三等水准测量要求。
3 岩移观测
监測线的起点高程根据以上计算得出,根据煤矿测量规程布设走向线自南向北,具体沉降变化趋势(见图3、4)
图3 走向线1沉降变化趋势图
图4 走向线1沉降累计柱形图
由于监测线1布设监测点的方向是自南向北的,走向线的沉降变化量在前半部分是逐渐增大的,在7号点达到最大值,之后是逐渐减小的。从下沉速度分析,可以看出最大期沉降速度出现在11期,从第十四期开始沉降速度出现了减小的趋势,说明下沉量比前几期小了,通过分析后面几期可以得出地表变化趋于稳定,具体的变化趋势符合采空区变化规律。
4.结论
(1)索佳NET05全站仪数据自动记录,可以消除了读数误差,角度观测值可以精确到0.5″;观测距离可以增加到了500m,节约了施工时间。
(2)本论文通过利用索佳NET05全站仪进行三角高程测量以及水准仪进行三等水准测量,对观测结果进行分析可以得出,索佳NET05仪器进行的三角高程测量可以满足三等水准测量的要求。
(3)通过工业广场周围的地表岩移观测分析,可以得出工业广场周围的采空区沉降规律明显,地表变化趋于稳定,符合采空区变化规律。
参考文献
[1] 程代忠,辛国,马耀昌.全站仪代替水准仪研究[J].人民长江.2006.11,37(11),13-15
[2] 许秀凤.全站仪对向观测法三角高程测量精度分析[J].江苏测绘.2001.03,24(1),26-28
[3] 靳海亮,赵常胜等.全站仪三角高程替代四等水准测量精度分析[J].辽宁工程技术大学校报.2005.10,23(5),606-608
[4] 张前勇,钱胜.全站仪水准法三角高程测量探讨[J].湖北民族学院学报.2007.03,25(1),42-45
[5] 何习平.全站仪中间法与水准测量比较[J].水电自动化与大坝监测.2004.08,28(4),37-39
[6] 薛迎春,赵立.用全站仪测量高程精度分析[J].三晋测绘.2004.03,11(1).37-39
[7] 李林.用三角高程测量方法替代四等水准测量可行性研究[J].同煤科技.2005.12,4,37-40