论文部分内容阅读
目前针对人体姿态估计的深度神经网络都是在特征图的固定位置上进行采样,无法对人体姿态的几何变换进行建模,当人体实例在尺寸、姿势、拍摄角度等方面发生变化后,网络泛化能力较差.因此,文中提出基于可变形卷积的多人人体姿态估计方法.利用可变形卷积对目标几何变换建模能力较强的特性,设计特征提取模块,可在人体关键点几何变化的条件下保证检测的准确性.为了进一步提高网络性能,利用预训练残差网络.模型的预测值与二维高斯模型生成的真值用于计算损失,并迭代训练模型,能在拍摄视角、附着物及人物尺度变化等复杂条件下有效检测人体