论文部分内容阅读
采用具有瞬态混沌特性的神经网络(TCNN)解任务分配问题,该方法利用神经元的自反馈产生混沌动态,由于混沌动态特性具有很强的搜索全局最优妥的能力,有效地避免了传统Hopfield神经网络(HNN)极易陶入局部极小的缺陷,同时利用时变参数控制混沌行为,使网络在经过一个矩暂的混沌倒分岔后逐渐于一般的Hopfield神经网络,保证网络收敛到一个最优或近似最优的稳定平衡点。仿真结果表明,TCNN解任务分配问题时,总能收敛到全局最优或几乎接近全局最优,同时具有更高的搜索效率,另外,还用此方法求解了属于NP-完全问题的