微小RNA与肿瘤多药耐药的关系及其研究进展

来源 :延边医学 | 被引量 : 0次 | 上传用户:jzaf_com
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  摘要:目的:目前化疗,手术和放疗是治疗恶性肿瘤的三大主要方法。然而,作为主要方法之一的化学疗法,在疗效方面一直不尽如人意,其中最主要的原因就是肿瘤细胞对药物产生了耐药性。肿瘤细胞对多种化疗药物产生交叉耐药性, 即多药耐药(multiple drug resistance, MDR) [1]。 MicroRNAs(miRNAs) 在调节基因的表达与肿瘤细胞的表型方面已经发展成为一支重要力量,其与细胞的增值[2~4],细胞周期进程[5~7],侵袭[8~10],以及分化[11,12]密切相关。同时, miRNA可以调控药物在体内的代谢,在肿瘤细胞对抗癌药物产生耐药方面发挥了重要作用[13]。故本文对miRNA与肿瘤多要耐药的关系及研究进展做一综述。
  关键词:miRNA 肿瘤 多药耐药
  Abstract:Objective At present, chemotherapy、operation and radiotherapy are the three main methods for the treatment of malignant tumors. However, as one of the main methods of chemical therapy, it always have poor response to treatment, which is the main reason is multiple drug resistance. MicroRNAs in the regulation of gene expression and phenotype of tumor cells has become an important strength, it is associated with the cell proliferation, cell cycle progression and invasion. At the same time, miRNA can regulate the drug metabolism in vivo, it also play an important role in develop resistance to anticancer drugs. The authors review the advances in the miRNAs and multidrug resistance of tumor.
  Keywords: miRNA; tumor; multiple drug resistance;
  1 miRNA的生成与基因调控机制
  MicroRNA是20-22个碱基长度的非编码RNA。miRNA的不编码任何蛋白质,但调控基因转录后的表达。大多数非编码miRNA的基因位点被发现在内含子的转录区域,但也有一些位于外显子区域[14]。首先, 编码miRNA的基因在RNA聚合酶II的作用下生成初始转录产物miRNA(pri-miRNA), 然后在核内被Drosha和DGCR8复合酶体剪切加工成具有茎环。
  结构的前体miRNA(pre-miRNA)。在核膜转运蛋白Exportin-5的作用下, pre-miRNA通过核输出转运至细胞质。在细胞质中, pre-miRNA在Dicer核酸内切酶和Loqs/TRBP蛋白复合体的共同作用下, 被加工成为成熟miRNA(mature miRNA)。成熟miRNA进入RNA诱导的沉默复合物(RNA-induced silencing complex, RISC)中,切割靶信使RNA或者通过结合其3'-非翻译区(3’-UTR)来抑制靶信使RNA的翻译。然而,一些研究显示成熟miRNA也可通过结合5'-非翻译区(5’-UTR)来激活靶信使RNA的翻译[15]。最近发现,一些miRNAs也可以一种与RISC无关的方式结合到decoy mRNAs[16]。
  2 肿瘤的耐药机制
  临床肿瘤治疗中化疗药物的应用在一定程度上抑制了肿瘤的生长,复发和转移。但近年来,肿瘤多药耐药的产生严重影响了化疗对肿瘤的疗效。目前,已知化疗耐药的分子细胞机制包括: 药靶表达增强与改变、阻止药物进入靶细胞内、药物排出与失活、DNA损伤修复增强、细胞凋亡减少、药物代谢改变以及药物诱导的细胞核型改变等[17~18]。因此,克服化疗耐药特别是MDR是目前遇到的严峻挑战。
  3 MicroRNA与肿瘤耐药
  尽管研究miRNA参与肿瘤耐药中的特殊信号转导途径和调控机制才刚刚开始, 但已有大量实验和临床研究表明, miRNA在化疗耐药过程中发挥了重要作用。miRNA是基于时间和空间的不同,在抗肿瘤中扮演者不同角色[19]。
  3.1 MicroRNA与耐药相关蛋白
  多药耐药(MDR)是指肿瘤细胞在对一种药物产生耐药的情况下,同时对其它完全不同的化疗药物也产生了耐药性。众所周知,耐药相关蛋白属于ATP结合盒(ATP-binding cassetteABC)
  B1/ CD243),MDR相关蛋(MRP1/ABCC1)乳腺癌耐药蛋白(BCRP/ABCG2)。这些蛋白质具有相似的跨膜域并且可以通过泵出有害药物来保护肿瘤细胞[20]。为了在体外模仿化疗耐药表型和研究MDR耐药机制,已经开发了具有药物抗性的癌细胞系。尽管通过肿瘤耐药系蛋白表达变化以及微阵列分析已披露的转换miRNA表达。一些miRNA,如miR-19, miR-21, miR-34a[21~23],在肿瘤耐药细胞系中升高了数倍。这些miRNA被认为在肿瘤细胞产生抗药性的过程中发挥了重要作用。同时,一些miRNA表达减少与一些耐药相关蛋白的上调具有相关性。这些miRNA通常可以调控耐药相关蛋白的表达。因此,化疗可能导致这些miRNA的表达发生变化,使耐药相关蛋白也发生了变化,最后导致细胞耐药。例如,miR-298的靶基因是MDR-1,调节miR-298的含量可以直接导致P-gp的下降。而且,过表达的miR-298可以逆转乳腺癌细胞的化疗耐药[24]。值得注意的是,在卵巢癌中miR-27a可以间接激活MDR-1,而在白血病中miR-27a可以直接有针对性的作用于MDR-1[25,26]。事实上,通过这些研究更加强化了miRNA的具有调节同一目标的双重角色。而且在未来更多的细节将解释miRNA如何应对在各种肿瘤中出现的不同信号通路。这些功能一旦被证实,基因疗法这种新的治疗途径将会被凸显。   其他ABC家族成员似乎也是miRNA的靶目标,比如MRP1和乳腺癌耐药蛋白(BCRP)。据报道在对依托泊苷(Etoposide,VP-16)耐药细胞系中miR-326可以调节MRP1的表达,因此miR-326可以逆转癌细胞对依托泊苷以及阿霉素的耐药性[27]。BCRP是另一种耐药相关蛋白。在乳腺癌细胞株中,它可以决定药物的药代动力学性质。在人类乳腺癌细胞中,发现miR-328可以靶向作用于BCRP的3'端非编码区(3'-UTR),进而影响药物的分布[28]。因为多药耐药的机制仅仅能部分解释肿瘤的耐药性。因此,需要更多的实验来探索miRNAs在不同类型的恶性肿瘤中的实际功能。尽管如此,对miRNA靶向调节药物耐药相关的蛋白的研究,无疑揭示miRNAs在肿瘤治疗中价值。
  3.2 MicroRNA改变药物靶点
  MicroRNAs不仅在特定的细胞层面影响肿瘤细胞的药物耐药,而且在药物的作用方式上也发挥作用。例如, miR-34a表达水平的增高与耐多西紫杉醇的乳腺癌细胞系有关。然而与之相反miR-34a表达水平的下降将会增加尤因氏肉瘤细胞对阿霉素和长春新碱的敏感性[43,29]。近来靶向治疗的发展,为成功治愈癌症带来了希望。已发现MiRNAs干扰特定的靶分子可以被药物阻断。在非小细胞肺癌中,Mir-126可以有效的结合在血管内皮生长因子(VEGFA)的3'非编码区。这个区域是血管生成抑制剂贝伐单抗(bevacizumab)的作用靶点。此外,Mir-126的恢复可以增强肿瘤细胞对抗癌剂的敏感性,这就意味合并靶向治疗的可能性[30]。作为细胞表面受体之一的表皮生长因子受体(EGFR/HER1)的突变与一定数量的癌正有关。因此它可以作为药物抗癌的一个重要靶点。酪氨酸激酶抑制剂(如吉非替尼,厄洛替尼)和单克隆抗体(如西妥昔单抗,帕尼单抗)已发展到抑制EGFR信号通路,并被批准用于治疗携带EGFR突变的患者。值得注意的是,在癌变和药物治疗中,EGFR通路被一些miRNA所串扰。例如,EGFR的突变可以正向调控miR-21的表达,然而这反过来又使表皮生长因子受体的表达增加[31,32]。这种正反馈作用对保持体内稳态是非常重要的,但是这种正反馈也会引起接受EGFR抑制剂治疗的患者出现抗药性。同样的miR-145通过靶向作用于EGFR,抑制癌细胞的生长,而在动物模型中EGFR抑制miR-145的表达进而促进肿瘤的发生[33,34]。这些发现揭示了miRNA可以起到缓冲作用的一面。miRNA通过自己的靶点调节来保持正向和负向信号的平衡。
  此外,miRNA可以通过上调同一通路的下游效应器导致药物的失活。肿瘤抗药性产生的原因之一是肿瘤抑制基因PTEN的失活。它的失活可以导致PTEN/PI3K/AKT通路的过度激活。靶向作用于PTEN其功能起到致瘤作用的miRNAs包括miR-17,miR-21,mir-144和miR-214[19,35-37]。除了生长抑制,另一个例子是在高表达miR-17-92肿瘤细胞中发现胰岛素样生长因子-1受体(IGF1)[38]。下调靶基因是IGF1的miRNAs可以导致肿瘤的发生,而上调这种miRNAs可以抑制肿瘤细胞的生长[39]。在个性化的医学中,未来的研究应解决miRNA表达的预测值。通过多种拥有相同靶基因的miRNAs克服肿瘤细胞的耐药性,以此作为抗癌药物也可能被证明是很有前途的[40]。
  3.3 MicroRNAs改变化疗药物浓度
  在细胞内药物传输系统的丢失,使耐药性的发展更显著。其直接导致细胞内的药物浓度下降。细胞间隙连接通讯(Gap junction intercellular communications ,GJIC)广泛参与运输小分子和第二信使。在癌细胞中间隙连接成分经常是缺失的,比如跨膜蛋白链接蛋白(transmembrane protein connexins,Cx)。恢复细胞间隙连接通讯可以抑制肿瘤的发展以及提高肿瘤细胞对药物的敏感性。GJIC的主要抗癌功能是旁观者效应(the bystander effect ,BE),当细胞毒性分子从靶细胞通过GJIC被运送到与之临近的细胞时,就可以使更多的细胞接触到化疗药物[41]。研究证明miR-1和miR-206的靶基因是connexins,它可以导致GJIC受损[42,43]。另一项研究表明,RNA结合蛋白Dnd1可以通过阻止miR-1和miR-206与它们的靶基因结合来抵消它们的功能[44]。这些研究结果证明内源性的miRNAs是存在于自身固有信息网络监管之下的。因此,系统性下调的miRNA也促进了耐药性的发展。据报道,人肺腺癌细胞对吉西他滨(gemcitabine)耐药的原因是系统性RNA干扰缺陷跨膜家庭成员1(SIDT1)促进miR-21细胞间的转移[45]。除了在细胞水平改变药物浓度外,miRNAs还可以影响药物在全身的药代动力学。例如,miR-27B可以靶向调控药物代谢酶超家族中的细胞色素P450(CYP)[46]。在乳腺癌组织中,miR-27b的下降伴随着乳腺癌细胞对多西他赛耐药主要相关蛋白CYP1B1表达的增高[46,47]。越来越多的证据表明,miRNAs对CYP家族的调控可以产生深远的生理影响。例如,据报道miR-892a可以靶向调控CYP1A1,以及let-7b可以抑制CYP2J2的表达[48,49]。最近的研究表明,miRNA以剂量依赖的方式抑制CYP。在转基因小鼠中,被以微小RNA为基础的shRNA敲掉CYP3A基因后其酶的活性大幅降低[50]。
  3.4 MicroRNAs对药物诱导癌细胞凋亡的影响
  多种化疗药物是通过诱导肿瘤内源性或外源性的凋亡起到抗癌作用的[51]。细胞对凋亡信号的敏感性可以决定治疗的效果。导致细胞凋亡的主要途径有两个:线粒体内在途径和跨膜外在途径。前者主要是在Bcl-2家族的控制下,其中包括超过30种的凋亡调节分子[52]。许多miRNAs是通过作用于Bcl-2家族成员来参与细胞凋亡的。例如,miR-15/16,MIR-21和miR-125b均显示出调节Bcl-2蛋白。研究显示,miR-15/16是通过靶向调节Bcl-2来诱导凋亡的。抑制miR-15/16就会促使Bcl-2的表达以及增加乳腺癌对他莫昔芬的抗药性[53]。虽然miR-21可以结合到Bcl-2mRNA的3'端非编码区,但是最终在大多数肿瘤中还是发挥抗凋亡的作用[54]。这可能是因为在相同的信号通路上,miR-21还可调控另一个促进凋亡的关键靶基因Bax。通过miR-21下调Bax的表达可以抑制药物诱导的细胞凋亡[55]。这些结果彰显了miRNA作为体内信号通路的缓冲作用。它可以通过同时控制上游和下游的效应来调节全身的信号通路。另外一个例子是miR-125b同时调控抗凋亡蛋白Bcl-2和促凋亡蛋白Bak1的表达,在不同的肿瘤中发挥耐药性和逆转耐药性的作用[56,57]。这与我们的研究是相符合的,miRNA是基于时间和空间的不同,在抗肿瘤中扮演者不同角色[19]。   4 小结与展望
  以进化保守论考虑,miRNA在生理条件下的性质可能更类似缓冲剂。最新数据研究表明,miRNA在不同信号流程中起到重要的平衡作用,并帮助其保持动态平衡[58]。癌症是一种异质性疾病。因此,个性化医疗已演变成未来临床肿瘤学的一个研究方向。miRNA网络的调节紊乱被认为在癌症发展中起到重要作用。因此,治疗策略应着眼于平衡miRNA的网络。人们不仅可以通过miRNA预测潜在的内在耐药性或获得耐药性, 还可以通过特异的miRNA靶点, 利用miRNA类似物或抑制剂, 并与抗癌药物联合使用, 调节药物代谢中主要蛋白的表达来增强药物的敏感性, 从而对癌症的个性化治疗产生影响。这些措施将为通过克服耐药来开辟新的肿瘤治疗途径提供希望, 从而提高癌症患者的临床治疗效果。
  参考文献:
  [1] Nishio K, Nakamura T, Koh Y, et al. Drug resistance in lung cancer. Curr Opin Oncol 1999; 11(2):109-15.
  [2] Viticchie G, Lena AM, Latina A, et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 2011; 10: 1121–31.
  [3] Shatseva T, Lee DY, Deng Z, et al. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci 2011; 124: 2826–36.
  [4] Yu B, Zhou S, Wang Y, et al. miR-221 and miR-222 promote Schwann cell proliferation and migration by targeting LASS2 after sciatic nerve injury. J Cell Sci 2012; 125: 2675–83.
  [5] Pernaute B, Spruce T, Rodriguez TA, , et al. MiRNAmediated regulation of cell signaling and homeostasis in the early mouse embryo. Cell Cycle 2011; 10: 584–91
  [6] Liang LH, He XH. Macro-management of microRNAs in cell cycle progression of tumor cells and its implications in anti-cancer therapy. Acta Pharmacol Sin 2011; 32: 1311–20.
  [7] Lerner M, Lundgren J, Akhoondi S, et al. MiRNA-27a controls FBW7/hCDC4-dependent cyclin E degradation and cell cycle progression. Cell Cycle 2011; 10: 2172–83.
  [8] Luo L, Ye G, Nadeem L, et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J Cell Sci 2012; 125: 3124–32.
  [9] Siragam V, Rutnam ZJ, Yang W, et al. MicroRNA miR-98 inhibits tumor angiogenesis and invasion by targeting activin receptor-like kinase-4 and matrix metalloproteinase-11.Oncotarget 2012; 3:1370-85.
  [10] Du WW, Fang L, Li M, et al. MicroRNAmiR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. J Cell Sci 2013; doi: 10.1242/ jcs.118299
  [11] Rutnam ZJ, Yang BB. The non-coding 3′ UTR of CD44 induces metastasis by regulating extracellular matrix functions. J Cell Sci 2012; 125: 2075–85.
  [12] Kahai S, Lee SC, Lee DY, et al. MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. PLoS One 2009; 4: e7535.
  [13] Ma J, Dong C, Ji C. MicroRNA and drug resistance. Cancer Gene Ther 2010; 17(8): 523-31.   [14] Rutnam ZJ, Wight TN, Yang BB. miRNAs regulate expression and function of extracellular matrix molecules. Matrix Biol 2012; 32:74-85.
  [15] Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007;318: 1931–4.
  [16] Yang X, Rutnam ZJ, Jiao C, et al. An anti-let-7 sponge decoys and decays endogenous let-7 functions. Cell Cycle 2012; 11: 3097–108.
  [17] Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med 2002; 53: 615-27.
  [18] Allen KE, Weiss GJ. Resistance may not be futile: MicroRNA biomarkers for chemoresistance and potential therapeutics. Mol Cancer Ther 2010; 9(12): 3126-36.
  [19] Li H, Yang BB. Stress response of glioblastoma cells mediated by miR-17-5p targeting PTEN and the passenger strand miR-17-3p targeting MDM2. Oncotarget 2012; 3: 165368.
  [20] Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol 2010; 46: 308–16.
  [21] Liang Z, Li Y, Huang K, et al. Regulation of miR-19 to breast cancer chemoresistance through targeting PTEN. Pharm Res 2011; 28: 3091–100.
  [22] Kastl L, Brown I, Schofield AC. miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat 2012; 131: 445–54.
  [23] Shi GH, Ye DW, Yao XD, et al. Involvement of microRNA-21 in mediating chemoresistance to docetaxel in androgen-independent prostate cancer PC3 cells. Acta Pharmacol Sin 2010; 31: 867–73.
  [24] Bao L, Hazari S, Mehra S, et al. Dash S. Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol 2012; 180: 2490–503.
  [25] Zhu H, Wu H, Liu X, et al. Role of microRNA miR-27a and miR-451 in the regulation of MDR1/ P-glycoprotein expression in human cancer cells. Biochem Pharmacol 2008; 76: 582–8.
  [26] Feng DD, Zhang H, Zhang P, et al. Down-regulated miR-331-5p and miR-27a are associated with chemotherapy resistance and relapse in leukaemia. J Cell Mol Med 2011; 15: 2164–75.
  [27] Liang Z, Wu H, Xia J, et al. Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 2010; 79: 817–24.
  [28] Pan YZ, Morris ME, Yu AM. MicroRNA-328 negatively regulates the expression of breast cancer resistance protein (BCRP/ABCG2) in human cancer cells. Mol Pharmacol 2009; 75: 1374–9.   [29] Nakatani F, Ferracin M, Manara MC, et al. miR-34a predicts survival of Ewing’s sarcoma patients and directly influences cell chemosensitivity and malignancy. J Pathol 2012; 226: 796–805.
  [30] Zhu X, Li H, Long L, et al. miR-126 enhances the sensitivity of non-small cell lung cancer cells to anticancer agents by targeting vascular endothelial growth factor A. Acta Biochim Biophys Sin (Shanghai) 2012; 44: 519–26.
  [31] Seike M, Goto A, Okano T, et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc Natl Acad Sci U S A 2009; 106: 12085–90.
  [32] Zhou X, Ren Y, Moore L, et al. Downregulation of miR-21inhibits EGFR pathway and suppresses the growth of humanglioblastoma cells independent of PTEN status. Lab Invest 2010; 90: 144–55.
  [33] Cho WC, Chow AS, Au JS. MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1. RNA Biol 2011; 8: 125–31.
  [34] Zhu H, Dougherty U, Robinson V, et al. EGFR signals downregulate tumor suppressors miR-143 and miR-145 in Western diet-promoted murine colon cancer: role of G1 regulators. Mol Cancer Res 2011; 9: 960–75.
  [35] Darido C, Georgy SR, Wilanowski T, et al. Targeting of the tumor suppressor GRHL3 by a miR-21-dependent proto-oncogenic network results in PTEN loss and tumorigenesis. Cancer Cell 2011; 20: 635–48.
  [36] Zhang LY, Ho–Fun Lee V, Wong AM, et al. MicroRNA-144 promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma through repression of PTEN.Carcinogenesis 2013; 34: 454–63.
  [37] Wang YS, Wang YH, Xia HP,et al. MicroRNA-214 regulates the acquired resistance to gefitinib via the PTEN/AKT pathway in EGFR-mutant cell lines. Asian Pac J Cancer Prev 2012; 13: 255–60.
  [38] Ernst A, Campos B, Meier J, et al. De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene 2010; 29: 3411–22.
  [39] McKinsey EL, Parrish JK, Irwin AE, et al. A novel oncogenic mechanism in Ewing sarcoma involving IGF pathway targeting by EWS/Fli1-regulated microRNAs. Oncogene 2011; 30: 4910–20.
  [40] Rai K, Takigawa N, Ito S, et al. Liposomal delivery of microRNA-7-expressing plasmid overcomes epidermal growth factor receptor tyrosine kinase inhibitor–resistance in lung cancer cells. Mol Cancer Ther 2011; 10: 1720–7.
  [41] Kandouz M, Batist G. Gap junctions and connexins as therapeutic targets in cancer. Expert Opin Ther Targets 2010; 14: 681–92.   [42] Yang B, Lin H, Xiao J, et al. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential bytargeting GJA1 and KCNJ2. Nat Med 2007; 13: 486–91.
  [43] Anderson C, Catoe H, Werner R. MIR-206 regulates connexin43 expression during skeletal muscle development. Nucleic Acids Res 2006; 34: 5863–71.
  [44] Kedde M, Strasser MJ, Boldajipour B, et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 2007; 131: 1273–86.
  [45] Elhassan MO, Christie J, Duxbury MS. Homo sapiens systemic RNA interference-defective-1 transmembrane family member 1 (SIDT1) protein mediates contact-dependent small RNA transfer and microRNA-21-driven chemoresistance. J Biol Chem 2012; 287: 5267–77.
  [46] Tsuchiya Y, Nakajima M, Takagi S, et al. MicroRNA regulates the expression of human cytochrome P450 1B1. Cancer Res 2006; 66: 9090–8.
  [47] Martinez VG, O’Connor R, Liang Y, et al.CYP1B1 expression is induced by docetaxel: effect on cell viability and drug resistance. Br J Cancer 2008; 98: 564–70.
  [48] Choi YM, An S, Lee EM, et al. CYP1A1 is a target of miR-892a-mediated post-transcriptional repression. Int J Oncol 2012; 41: 331–6.
  [49] Chen F, Chen C, Yang S, et al. Let-7b inhibits human cancer phenotype by targeting cytochrome P450 epoxygenase 2J2. PLoS One 2012; 7: e39197.
  [50] Wang Y, Hu HH, Pang H, et al. Lentiviral transgenic microRNA-based shRNA suppressed mouse cytochromosome P450 3A (CYP3A) expression in a dose-dependent and inheritable manner. PLoS One 2012; 7: e30560.
  [51] Zhang Y, Yang JM. The impact of cellular senescence in cancer therapy: is it true or not? Acta Pharmacol Sin 2011; 32: 1199–207.
  [52] Pommier Y, Sordet O, Antony S, et al. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene 2004; 23: 2934–49.
  [53] Cittelly DM, Das PM, Salvo VA, et al. Oncogenic HER2 {Delta} 16 suppresses miR-15a/16 and deregulates Bcl-2 to promote endocrine resistance of breast tumors. Carcinogenesis 2010; 31: 2049–57.
  [54] Dong J, Zhao YP, Zhou L, et al. Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Arch Med Res 2011; 42: 8–14.
  [55] Shi L, Chen J, Yang J, et al. Wang Z. MiR-21 protected human glioblastoma U87MG cells from chemotherapeutic drug temozolomide induced apoptosis by decreasing Bax/Bcl-2 ratio and caspase–3 activity. Brain Res 2010; 1352: 255–64.
  [56] Zhou M, Liu Z, Zhao Y, et al. MicroRNA-125b confers the resistance of breast cancer cells to paclitaxsuppression of pro-apoptotic Bcl-2 antagonist killer 1 (Bak1) expression. J Biol Chem 2010; 285: 21496–507.
  [57] Zhao A, Zeng Q, Xie X, et al. MicroRNA-125b induces cancer cell apoptosis through suppression of Bcl-2 expression. J Genet Genomics 2012; 39: 29–35.
  [58] Mendell JT, Olson EN. MicroRNAs in stress signaling and human disease. Cell 2012; 148: 1172–87.
其他文献
摘要:高血压会造成心功能不同程度的损害,高血压左室重构分为离心性肥厚、向心性肥厚、向心性重构、正常构型四种,可进行组织多普勒模式二尖瓣环运动频谱、定量组织速度成像技术、Tei指数等超声心动描记法评估其心室舒缩功能情况,本文对近年来应用超声心动图技术评估高血压患者左室不同构型与心功能的关系做如下综述,以期为广大医务工作者临床超声评估高血压不同左室构型的心功能状态提供理论依据。  关键词: 研究进展;
期刊
摘要:目的:研究分析腹腔镜胆囊切除术造成胆管损伤的原因及预防措施。方法:回顾性探析2010.10-2014.12期间在我院接受腹腔镜胆囊切除术治疗的1350例患者,其中3例患者胆管损伤。结果:本组1350例腹腔镜胆囊切除术患者中,胆管损伤者3例,约占0.22%。其中,1例患者为胆总管横断伤,给予胆管端端吻合术;1例患者为肝总管撕裂伤,给予缝合修补术;1例患者为肝总管电灼伤,术后延迟瘘胆。结论:腹腔
期刊
摘要:目的:探讨血脂异常血液标本对胆红素测定的影响。 方法:分别选取我院近年来收治的高血脂症患者和健康志愿者各118例,记录两组患者胆固醇、甘油三酯水平,比对其血清胆汁酸、胆红素水平差异。 结果:将两组患者总胆固醇和甘油三酯进行比较,P6.20 mmol/L),其血清胆汁酸水平及胆红素水平也较正常人群异常,分别达到(24.1±3.2)mmol/L和(8.4±3.7 )mmol/L,与血脂正常志愿者
期刊
摘要:文章根据清代医学家唐容川《中西医汇通医经精义》西医长于“形迹”,中医长于“气化”的中医西医相互参照汇通的思想,探寻中医的五脏学说与五行学说。通过对中医概念名词的理解,分析与西医解剖学和生理学的对照,以点带面,用西医的角度探讨中医理论。  关键词:中西医结合;五脏;五行相生相克  一、前言  五行学说是古代中国人民朴素的辨证的哲学思想。将古代哲学理论中以木、火、土、金、水五类特性及其生克制化规
期刊
摘要:目的:探讨经阴道和经腹超声检查在异位妊娠早期诊断中的价值和体会。方法:对近45例异位妊娠患者分别行经阴道和经腹行超声检查,对声像图特征和检查结果进行分析和总结。 结果:两组在总诊断准确率,附件包块、盆腔积液、宫内假孕囊诊断率和受干扰率等指标进行比较,P<0.05,存在显著差异,TVS组优于TAS组。 结论:在异位妊娠早期诊断中使用经阴道超声检查,检出时间早、诊断率高、误诊率低,具有较高的临床
期刊
摘要:目的:探讨非支气管体动脉(NBSA)参与咯血的相关因素,提高栓塞治疗效果。方法:回顾分析46例咯血患者的临床资料CT及DSA检查资材。观察NBSA参与咯血的发生率,形成体~肺循环分流(BPS)的情况,以及与胸膜增厚等基础疾病的相关性。结果:46例患者中有20例患者的43支NBSA参与咯血供血,其中37支(86.0%)合并BPS。20例患者中有17(85%)例伴有不同程度胸膜增厚。NBSA参与
期刊
摘要: 目的 :观察乌司他丁对脓毒性脑病患者血清TNF-α、IL-1及S-100蛋白浓度变化的影响。方法: 将60例脓毒性脑病患者,随机分为治疗组(28例)和对照组(32例),对照组给予常规治疗,治疗组加用乌司他丁,分别观察两组的疗效及TNF-α、IL-1及S-100蛋白浓度变化。结果:与对照组相比,治疗组第3、5天的血清TNF-α,IL-1,及S-100蛋白浓度血清较对照组显著降低,差异具有统计
期刊
摘要:目的 :研究防旋型股骨近端髓内钉用于老年人股骨粗隆间骨折内固定术的效果及安全性,探讨其临床适用性。方法: 选择从2012年10月至2014年3月于我院接受治疗的120例股骨粗隆间骨折老年患者,随机分为研究组60例和对照组60例,对照组采用动力髋螺钉(DHS)内固定治疗,研究组采用防旋型股骨近端髓内钉(PFNA)内固定治疗。观察两组患者围手术期的切口长度、手术时间、术中出血量等指标以及临床疗效
期刊
摘要:急性肾功能衰竭是突然的、急速的肾功能减退,它是肾脏实质性的损害。急性肾功能衰竭的病因可分为广义和狭义的两种,广义的是指全身疾病和肾脏本身的病变引起的肾功能谈衰竭、一般又分为肾前性、肾性和肾后性。我科20例泌尿系统不同部位结石,因体外震波碎石后输尿管发生急性梗阻, 6小时内,行输尿管急诊插管解除梗阻后,患者出现多尿现象,现就现象进行分析如下。  关键词:输尿管梗阻 体外震波 利尿现象  1概论
期刊
摘要:目的:腹腔镜器械清洗与维护采取多酶溶液加超声清洗的临床效果。方法:选取120套于2013年8月至2014年8月期间我院消毒供应室回收的腹腔镜手术器械,将入选的手术器械平分为对照组和研究组,对照组采取多酶清洗方法,研究组采用多酶加超声清洗方法,观察2组清洗效果。结果:器械清洗后,经统计,研究组的目测清洗合格率及OB实验合格率分别为96.7%、95%较对照组的85%、83.3%明显要高(P0.0
期刊