论文部分内容阅读
神经网络集成技术能有效地提高神经网络的学习能力和泛化能力,已经成为机器学习和神经计算领域的一个研究热点.本文利用不同的神经网络算法产生神经网络集成个体,以误差平方和最小为准则,用遗传算法动态求解集成个体的非负权重系数,进行最优组合集成建模研究,并以此建立股市预测模型.通过上证指数开盘价、收盘价进行实例分析,计算结果表明该方法相对传统的简单平均集成模型,具有预测精度高、稳定性好,易于操作的特点.