论文部分内容阅读
随着网络技术高速发展,无疑带来了很多网络安全隐患问题。面对复杂、高维的网络数据特征时,K-Nearest Neighbour,Navie Bayes等传统的一些方法无法达到高性能、高准精度和实时性的要求。为此,提出利用深度学习可视化方式进行入侵检测。对数据进行可视化处理,并采用卷积神经网络(CNN)进行入侵检测。主要采用不同数量样本进行对比,结果显示,卷积神经网络效果与样本量的多少相关性不大;并和传统没有可视化处理数据的方式进行对比,结果显示,可视化处理后的检测效果相对较好。