Analytic solutions of a porous medium equation

来源 :科技致富向导 | 被引量 : 0次 | 上传用户:hekaishou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
  【Abstract】In this paper, the homotopy analytic method (HAM) is employed to solve a porous medium equation with a source term, and the analytic approximate solutions are derived. In addition, the analytic approximate solutions obtained by the HAM reveals that the present method works efficiently.
  【Key words】Homotopy analytic method (HAM); porous medium equation; analytic approximate solution
  一類渗透媒介方程的解析解
  张晓莉 赵小山
  (天津职业技术师范大学理学院 中国 天津 300222)
  【摘 要】本文应用同伦分析法求解一类渗透媒介方程, 得到方程的较高精度的近似解析解。从而证明同论分析法在求解非线性动力系统的有效性。
  【关键词】同伦分析;渗透媒介方程;近似解析解
  1.Introduction
  Scientific fields,such as plasma physics,fluid dynamics,solid state physics,mathematical biology and chemical kinetics are usually governed by nonlinear equations.A broad range of analytical solution methods have been propsed,such as Bucklund transformation method[1],Hirota’s bilinear scheme[2],inverse scattering method[3],the homotopy analytic method[4-5], the homotopy perturbation method[6],Adomian Pade approximation[7],the extan
  ded tanh method[8],variational method[9]and others.
  In this paper, the homotopy analytic method(HAM)is applied to give analytic solutions of a porous medium equation[10]with a source term, which is proved to be very powerful,effective, and convenient to solve nonlinear equations with boundary value.
  2.The solution of the porous medium equation
  In this section,we consider the Cauchy problem for a porous medium equation with a source term.This equation has been widely used as a simple model for a non-linear heat propagation in a reactive medium. The porous medium equation with a source term[10]is
  =aw+bw (2.1)
  For simplicity we take f(ω)=ω,g(ω)=bω.Here m,k are rational numbers,a,b are parameters.The case when a=1,b=0 is studied in[11]. Also a=1,b≠0,m=0 is studied in[12].Here we consider the porous equation with m=-2,k=1.Exact solution of this equation is given w(x,t)=exp(bt) as with the initial conditions w(x,0)=w=[12].
  Then equation can be rewritten as
  =aw+bw (2.2)
  Firstly we make the transformation z=x-ct,c≠0.Substituting z=x-ct,c≠0 into (2.2), we have
  bw+cw'-a(-+)=0 (2.3)
  Now we employ the HAM to solve it.We at first construct a following continue mapping namely the zero-order deformation equation:
  (1-p)(bW(z,p,h)+c-bW-c)-ph[bW(z,p,h)+c-a(+)]=0 (2.4)
  Then,the approximate solution of Eq.(2.4) can be written as:
  w(z)=W+ (2.5)   where h is a non-zero real number.Assuming that W(z,p,h)=,then we take first order differential with respect to p in Eq.(2.4),we finally have the following first-order deformation equation:
  -+-b(1+h)W(z,p,h)-b(hp+p-1)-c(1+h)-+c(1-p+hp)+[2ah(()+2p+2p+p)]-=0 (2.6)
  Let p=0,Eq.(2.6) can be rewritten as
  +b+c=0 (2.7)
  Solving it, we have
  =h(-e) (2.8)
  Differentiating about the first-order deformation equation (2.6) with respect to p,we obtain the second-order deformation equation
  -{-24ahp+W(z,p,h)[2b(1+h)+b(ph+p-1)+c(2(1+h)+(ph+p-1)]+6ahW(z,p,h)[p()+2(+2p)+p()]-2ahW(z,p,h)[2p()+(2+p+2+p+2p]+ahW(z,p,h)3[2+p]}=0 (2.9)
  Let p=0,Eq.(2.9) can be rewritten as
  4aeh++---++b+c=0 (2.10)
  Solving it, we have
  =[2eh(-6aceh(x-1)x+3c(h+1)(e-xe) +6abcehx(x-1)-abehx(x-1))] (2.11)
  So,from Eq.(2.8),Eq.(2.11),we have
  w(x,t)≈W++= (2.12)
  By using mathematic software mathematica,we obtain other terms of series solution.Assuming that a=0,b=1,c=1,h=1.5,we compare exact solution with the solution by HAM at x=2.5,t∈[4,5] by in Fig.1.When x=2,t=4.5, the series solution is convergent quickly to the exact one, as shown in Table. 1.
  Fig. 1. Comparison of the exact solution with analytic approximation solution of Eq.(2.2)
  Table.1. Comparison between the exact solution and approximation solutions of Eq.(2.2)
  3.Conclusions
  In order to verify numerically whether the proposed methodology leads to higher accuracy, we study the porous medium equation by the method.We demonstrate the higher efficiency of the corresponding analytical approximate solutions of Eq.(2.2) in the Fig.1 and Table.1.It is to be noted that 13 terms approximate solutions can achieved a very good approximation with the actual solution of the equations by the HAM. It is evident that the solutions are very rapidly convergent to the exact one by the HAM.
  【References】
  [1]Wadati M.Introduction to solitons [J].Pramana:J Phys.,2001,57: 841-7.
  [2]Hirota R. Exact solution of the Korteweg-de Vries equation for multiple collisions of soliton[J].Phys Rev Lett.1971,7:192-201.
  [3]Blowitz M J,Clarkson PA.Nonlinear evolution and inverse scattering[M].Cambridge: Cambridge University Press.1991.
  [4]S.J. Liao,The proposed homotopy analysis technique for the solution of nonlinear problems[D].PhD thesis, Shanghai Jiao Tong University,1992.
  [5]S.J. Liao,An explicit, totally analytic approximate solution for Blasius’ viscous flow problems[J].Int. J. Non-Linear Mech.,1999,34:759-778.
  [6]He JH. Homotopy perturbation technique [J]. Comput. Meth .Appl .Mech .Eng,1999,178:257–62.
  [7]G. Adomian,A review of the decomposition method in applied mathematics [J].J Math.Anal. Appl.,1998,135:501-504.
  [8]De-Sheng L,Feng G,Hong-Qing Z. Solving the(2+1)-dimensional higher order Broer–Kaup system via a transformation and tanh-function method [J].Chaos,Solitons & Fractals,2004,20(5):1021-5.
  [9]He JH.Variational principles for some nonlinear partial differential equations with variable coefficients [J].Chaos,Solitons &Fractals,2004,19(4): 847–51.
  [10]Nevin Pamuk.Series solution for porous medium equation with a source term by Adomian”s decomposition method,Appl.Math.Comput[J].2006, 178:480-485.
  [11]S.Pamuk.Solution of the porous media equation by Adomian’s decomposition method[J].Phys.Lett.A,2005,344:184–188.
  [12]A.D. Polyanin,V.F.Zaitsev,Handbook of Nonlinear Partial Differential Equations[M].Chapman and Hall/CRC Press,Boca Raton,2004.
其他文献
【摘 要】在工程范围内主要为重盐碱粘质土,土壤pH普遍高于8.0,局部区域土壤全盐含量高于0.5%(部分月份,数值会更高),不能满足大部分植物的生长需要,要在这样的条件下建设景观绿化工程,就必须处理好土壤问题,这就是排盐碱工程的意义所在。  【关键词】土壤;排盐;绿化  以天津高新区软件和服务外包基地综合配套区08R09R住宅之园林景观专业分包工程为例,此工程位于天津市西青区天津高新区、海泰大道以
期刊
【摘 要】本文描述和记载了两张奇异图片的真实性,此图片无任何的虚假捏造成分。请中国的科学家破解这自然属性的光学合成图像之内涵,同时,也是破解宗教界对此经过自然曝光成像的虚拟看法和真实的自然科学答案。另外,本文也分别讲解了这两张图片的真实来历。并详细的做了初步的成像分析和拍照过程,已让科学界给出最佳的题解。  【关键词】图片;自然;科学;奇异;宗教  1.第一张图片说明  探索人类超自然现象,必须坚
期刊
【摘 要】水景设计是现代城市水环境设计和园林水体中的一个重点,本文从阐述水体的景观特性和水的开发利用谈起,以我国水体景观设计的热潮为背景,从景观设计的角度分析水体与滨水景观和园林景观设计的关系及需要解决的问题。  【关键词】景观设计;水体景观;特性与作用;关系  0.前言  水体景观在景观设计中已成为一个重要的环节,它具有灵活、巧于因借等特点,能起到组织空间、协调景观变化的作用,更能明确游览路线、
期刊
【摘 要】本文根据笔者的工作经验,阐述了某工程的方案构思;并引发出一些思考,认为目前多数建筑设计节能意识淡薄,造成高能耗、 低效益,影响建筑使用效率,浪费巨大。我们看重的是,通过本项目实践的展示,倡导低碳减排的设计理念,给同行予思考。笔者认为建筑师必须以更加精心的创作迎接来自各方面的挑战。  【关键词】方案;建筑设计;节能  0.前言  在方案投标中,笔者的方案被选作实施方案,该项目与2011年4
期刊
人类社会迅猛发展导致环境污染、环境破坏为代表性的生态环境问题日益突出。人类社会想要健康、持续地发展下去,就不得不重视和解决好相关的环境问题。目前全世界都在致力于节能减排,倡导建立人与生态和谐相处的环境友好型经济增长模式[1]。在这大背景下,我国造纸业面临着非常严格的考验,一方面我国正在探索经济发展模式的转型,由原来的粗放型发展转型为集约型,另一方面,我国政府已经高度重视环境问题,并对节能减排做出承
【摘 要】本文主要论述了如何将惩防体系建设融入企业内控管理并提出相关措施。  【关键词】惩防体系;企业管理  如何以科学发展观为指导,创新和改进国有企业反腐倡廉工作,扎实推进惩治和预防腐败体系建设,是当前需要研究和解决的一个重大课题。实践证明,惩防体系建设必须全面融入企业内控管理之中,才会产生实实在在的效果。本文就惩防体系建融入企业管理流程、规章制度、体制机制的途径作初步探讨。  1.将惩防体系建
期刊
【摘 要】本文通过提出县级图书馆大力开发与提升公共文化服务能力的理念,围绕如何依托历史文化名城的优势,就通过挖掘历史文化名城的历史内涵,提升南诏故都巍山县公共文化服务内涵、提高公共文化产品供给、丰富公共文化服务内容、打造公共文化服务品牌,对一些新的途径进行思考。作者认为:只有不断解放思想、开拓创新,在充分发挥地域优势的前提下,不断实践和探索开发与提升公共文化服务能力的新途径和新办法,才能不断发挥县
期刊
水下航行器是海军装备中重要的舰种,水下航行器的隐蔽性以及水下航行能力对水下航行器来说是极其重要的性能,这与其他敌方舰队作战时具有巨大的威胁性。水下航行器的通气管桅杆是水下航行器在水下进行气体交换时的重要结构,通气管桅杆的性能越好,强度越高,水下航行器的隐蔽性以及水下航行能力越好。为保证水下航行器获得更好的隐蔽性能和水下航行能力,研究通气管桅杆水动力性能,对水下航行器的发展具有重要的意义。
  本文结合波浪力理论以及 Morison 公式,对水下航行器的通气管桅杆在不同工况下所受阻力进行测量,并最终校
【摘 要】本文所选取案例来自美国安海斯-布希公司(Anheuser-Busch,简称A-B),作为一家拥有150年历史的家族企业,在享有“美国啤酒业领导者”的荣耀之余,该家族企业曾在各大商业排行榜中获得过无数荣誉,一度风光无限;然而在家业传承过程中发生的代际冲突,却改变了这家传奇家族企业。从本案例中,可以总结出家族企业传承中两代人冲突产生的原因及其表现并且对我国家族企业有巨大的借鉴意义。  【关键
期刊