论文部分内容阅读
针对随机紊件下动态规划模型的主要特点,运用智能算法混合编程理论,设计了一种探索多阶段决策问题的智能混合算法。该算法首先将问题转化成一族同类型的一步决策子问题,然后利用随机模拟和遗传算法,依据训练样本形成的训练神经元网络,在单步决策中寻求最优策略和最优目标值,逐个求解,再据初始状态逆序求出最优策略序列和最优目标值。仿真结果表明,该算法具有一定的通用性,初始设计点可以随机产生,其计算精度不因函数的非线性强弱而受影响,对目标和约束的限制较少,可应用于多种形式的随机多阶段决策优化问题,较好地满足了随机动态规划模型